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Abstract— People share opinions, exchange information, and
trade services on large, interconnected platforms. As with
many new technologies these platforms bring with them new
vulnerabilities, often becoming targets for fraudsters who try
to deceive randomly selected users. To monitor such behavior,
the proposed algorithm evaluates structural anomalies that
result from local interactions between users. In particular, the
algorithm evaluates the degree of membership to well-defined
communities of users and the formation of close-knit groups
in their neighborhoods. It identifies a set of suspects using a
first order approximation of the evolution of the eigenpairs
associated to the continuously growing network. Within the
set of suspects, the algorithm them locates fraudsters based
on deviations from the expected local clustering coefficients.
Simulations illustrate how incorporating asymptotic behavior
of the structural properties into the design of the algorithm
allows us to differentiate between the aggregate dynamics of
fraudsters and regular users.

I. INTRODUCTION

Every day hundreds of thousands of people interact on
online platforms. Their scalable architecture offers a highly
customizable experience for end users and a cost-effective
solution for service providers. As the cost of technology
drops, it is envisioned that even more users will engage in
an even larger online exchange of information and services.
And as the number of these transactions grow, attempts to
exploit vulnerable platforms will have a profound impact on
service providing businesses and government agencies.

For over two decades, data mining has provided different
approaches for designing algorithms to visualize, organize,
segment, and predict deceptive activities [1]. Substantial
progress has been made in developing neural network and
machine-learning techniques to mine vast arrays of data
based on transactional signatures [2]. Generally speaking,
signature-based detection techniques allow analysts to distin-
guish the characteristics of users who, in a similar manner to
past instances, attempt to gain an unfair advantage over reg-
ular users [3]. Machine-learning algorithms generate graph-
ical decision trees, which are a useful tool to identify the
signatures of deceptive transactions (e.g., to extract profiles
of suspects in the form of if-then rules) [4]. Nonetheless, if
the design of signature-based algorithms ignores the growing
complexity of the interaction between fraudsters and regular
users, detection generally falls short (e.g., see [5] and [6]).

A more realistic assumption is to hold that fraudsters
interact with a small set of other fraudsters (or false users).
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They mislead reputation mechanisms by mutually boosting
their evaluation scores, eventually gaining trust and engaging
in deceptive transactions with regular users. To tackle such
schemes, detection techniques must examine the collective
nature of fraud in relation to the expected aggregate behavior
of regular users. Transactions can be represented as a grow-
ing network in which a link represents a service agreement
between two users and the attachment of a node the addition
of a new user.

Our premise is that fraudsters perform random link at-
tacks (RLAs), which represent attempts to deceive randomly
selected regular users and give rise to detectable anomalies
in the structure of the network. It is envisioned that modeling
the behavioral characteristics of regular users serves as
a framework to provide a formal assurance for detection
without the use of transactional signatures.

Past efforts along these lines include the work in [7], which
introduces an algorithm that relies on measures of both (7)
local clustering (to identify non-collaborative attacks) and
(i) neighborhood independence (to identify attacks by larger
sets of common neighbors between the victims). Taking into
account both properties ensures that fraudsters cannot easily
resemble interaction patterns by simply forging strongly
clustered neighborhoods. The work in [8]-[10] proposes
an alternative approach, which focuses on the division of
the network into modules or communities (i.e., densely
connected groups of users, with only a sparse number of con-
nections between them) [8]. In particular, the spectrum-based
models in [9], [10] show that fraudsters who perform RLAs
are located in a region that can be separated (to some extent)
from regular users. The approach is based on (4) identifying
suspects according to a measure of node non-randomness
(to capture which users seem to unambiguously belong to
a specific community); and (i¢) filtering the resulting group
of suspects (under the assumption that fraudsters are likely
to form dense subgraphs). Unlike the work in [7]-[10], the
approach presented in this paper focuses on evaluating local
network properties that emerge as new users become part of
the network and interact with each other over time.

The approach is novel in that it models the presumed be-
havior of regular users and fraudsters (based on connectivity
trends found in empirical data for scenarios where RLAs
lead to changes in the clustering properties of the network
[11], [12]). Conditions for fraud detection depend on the
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measure of node non-randomness presented in [9], [10] and
an analytical expression for the local clustering coefficient.

The remaining sections are organized as follows: Section 2
defines the problem and discusses some assumptions on
the available data. Section 3 proposes a model that cap-
tures individuals tending to form triad junctions as they
interact with other individuals. Theorem 1 characterizes the
asymptotic behavior of the local clustering coefficient of the
nodes of the undirected network of interactions. Section 4
introduces the detection algorithm based on Theorem 1.
Section 5 presents the receiver operating curves (ROC) for
different network conditions and detection parameters. In
particular, we compare the proposed algorithm with the work
in [9]. Finally, Section 6 draws some conclusions and future
research directions.

II. PROBLEM DEFINITION

Our objective is to identify fraudsters based on anomalies
in the structure of the interactions between users. Specifi-
cally, let us define the detection problem as follows.

Given:

(1) A dynamic dataset that captures the transactions
between regular users, who are naturally divided
into two communities with highly clustered neigh-
borhoods.

(it) Some exposed fraudsters whose interactions with
regular users can be characterized as RLAs.

We want to:

(#i7) Model the evolution of the local clustering proper-

ties of regular users; and

(iv) Find out which individuals are performing RLAs.
Condition (i) requires that the structure of interaction be-
tween users follows some well-defined patterns. In particular,
we assumed that users can be divided into two communities
and the average local clustering distribution reaches a high
stationary value. Condition (i7) requires that we know the
origin of some fraudulent transactions (e.g., from historical
data). Finally, the expected pattern of interaction between
fraudsters and regular users must follow a uniform random
process. Next, we focus on developing a dynamic model
that we use to characterize the expected value of the local
clustering of regular nodes as a function of their current
degree.

III. ANETWORK MODEL

Let H(t) = {1,...,n(t)} be a finite set of interconnected
nodes (users) at time index ¢. The adjacency matrix A(t),
with entries a;;(t) € {0,1}, represents whether there has
been a transaction (an exchange of information or services)
between two users. In particular, Vi, j € H(t), i # j, a;; =
aj; = 1 (i.e., there exists an undirected link between the
two nodes) if nodes 7 and j have engaged in a transaction
up to time ¢. Let G(t) = (H(¢), A(t)) be the network at
time index ¢ and Q;(t) = {j € H(t) : a;; = 1} represent
all nodes connected to node ¢ (i.e., the set of neighbors of
node 3). For node ¢ € H(t), let k;(t) = |Q;(t)| represent the
degree of node <.

Under the premise that the network of regular users is
naturally divided into two communities, it can be viewed as
having three types of nodes. Nodes of type 1 or 2 represent
regular users. Nodes of type O represent fraudsters. For node
i, the variable 0; € {0, 1,2} specifies its type. Let R(t) =
{i € H(t) : §; € {1,2}} and F(t) = {i € H(t) : §; =
0} be the set or regular users and fraudsters, respectively.
The topology of the network evolves based on a decision-
making mechanism that involves two kinds of processes. The
first represents the addition of new users and takes place the
instant a new node is added to the network (called node
attachment); the second represents the occurrence of new
transactions and takes place at asynchronous instants of time
thereafter (called node interaction).

A. Node attachment

Suppose that every time index ¢ a newly added node
attaches to m different nodes. The likelihood that this new
user, node j ¢ H(t — 1), is a fraudster is p; (i.e., §; =0
with probability py). If §; # 0, i.e., if node j is a regular
user, there is a strong preference to attach to a node of the
same type (i.e., nodes with similar characteristics are more
likely to establish connections between them) [13], [14]. In
particular, node j connects to node j' € H(t—1) of the same
type with probability p, (and with probability 1 — p, to a
regular node with ¢; # d;). Note that there are no self-loops
(ie., Vi € H(t), ay(t) =0 for all ¢ > 0).

Fraudsters do not differentiate between the two types of
regular users. They connect randomly to m nodes of type 1
or 2, and to my nodes of type 0. Since fraudsters perform
RLAs, each regular user has an equal probability to become
the victim of an attack, independently of which users have
been targeted in past instances.

B. Node interaction

After attaching to the network, regular nodes try to form
close-knit groups (triad junctions) based on conditions sim-
ilar to [11], [12]. In particular, after node j ¢ H(t — 1)
attaches to node j° € H(t — 1) (one of the total of m
nodes that node j links to during node attachment), it may
establish additional links to v regular neighbors of node j’.
After attaching to the networks, node j establishes these
additional links (forms triads) at asynchronous instants of
time. Note that if the set of neighbors of node j' is a
subset of the set of neighbors of node j, then there is no
possibility of forming triads. In general, if j € Q;/(¢) and
j' € Q;(t) for some node %, then node j establishes an
additional link to node ¢ with probability x;(¢). The value of
x;(t) is influenced by d; and ¢;. In particular, a multivariate
random variable Xf with a positive expected probability
p) = E[X?] = f(01,...,04)doy ...dog captures the prob-
abilities of establishing a link between nodes j and ¢, where
o1,...,0s are independent factors that influence the affinity
between the various types of nodes. The process of triad
formation repeats for every link established during node
attachment (m times).
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As in [15], [16], here the probability of establishing
additional links due to triad formation is given by

[ pa—, o =4
:Cz(t)_{ (1_pA)_uLki’if6j7é5i

where u captures the compatibility between regular nodes
(chosen from a uniformly random distribution with support
on [0, 1]). The parameter w, 0 < w < u, represents the cost of
establishing additional links. The random variable X takes
values x;(t) and the expected value of X} at time ¢ is given
by

5
pt_{

where p,, equals % and py, is the probability distribution of
k;(t). Note that if 6; = ¢; the process of triad formation
has a stationary mean pa (because eq. (2) converges to pa).
Otherwise, if 6; # 0; it has stationary mean 1—pa. Let X 0 =
{Xf } with stationary mean 0 < pa < 1 be the random
process associated to the formation of close-knit groups.
Unlike regular nodes, fraudsters do not tend to establish
edges to nodes of the same type; instead they persistently
perform RLAs. After attaching to the network, each fraudster
chooses to attack, with probability p';, a total of m’; regular
nodes selected randomly at every time ¢ (among nodes that
have not been one of its past victims, i.e., are not part of its
set of neighbors).
To ensure that the dynamics of the model is well-defined,
the following assumptions are needed:
(A1) The network G(0) is connected.
(A2) The network G(0) has at least m nodes, each with at
least v neighbors.

(D

e g EpA — iy ) pape du di, if §; = 6,

1 (@ - pa) - #m) pup du dki, if 8; # 6
)

Assumption (Al) is satisfied when there exists a path
between any pair of nodes. Assumption (A2) requires that the
initial network has n(0) > m, and for every node i € H(0),
k;(0) > v (which is required when pa = 1).

To characterize the evolution of the clustering proper-

ties of the network, we restrict our analysis to regular
users. The following theorem describes their asymptotic
behavior (due to space constraints, the complete proof is
found in the online supplement for this paper, available at:
homes.soic.indiana.edu/pmoriano/publications).
Theorem 1 (local clustering coefficient): For all networks
G(0) that satisfy (A1)-(A2), the asymptotic behavior of the
local clustering coefficient for a regular node with degree k;
satisfies

2 (ki+pm+61n (’;—i;) (p— 1))

C; = 3
(ki + pe) (ki +pe — 1) )
with p = Hetiprige L shpee=l) ang ¢ = 2nCal.

Theorem 1 implies that the value of ¢; does neither depend
on the initial network G(0) nor the size of G(t) (note that the

coefficient does not vanish as n(t) — oo). Theorem 1 allows
us to estimate the clustering coefficient in the neighborhood
of regular nodes. We will use this convergence result to
design conditions that are useful to identify random attacks.

IV. DETECTING FRAUDSTERS

To detect fraudsters (i.e., nodes of type 0) the algorithm
follows a two-step procedure. The first step identifies sus-
pects (i.e., potential fraudsters) based on deviations from the
location of nodes in the spectral space (following similar
ideas as in [10]). The second step uses the expression given
by eq. (3) to locate fraudsters within the set of suspects.

A. Spectral analysis

First, note that at time index ¢, there are |H (t)| = n(0)+¢
nodes, of which the expected number E[|R(t)|]] = (1 —
pr)t+R(0) are expected to be regular users and E[|F'(t)|] =
pst + F(0) are expected to be fraudsters. At this time ¢,
fraudsters have, on average, engaged in (mp; + m/’p’)t
attacks. Second, define a time window t,, > 0 in which
we measure the changes in the spectra of the adjacency
matrix. Let the graph G(t) = (H(t), A(t)) with adjacency
matrix A(t) = A(t—t,,) represent the network G(t) without
taking into account any link that was established after time
t—t,,. We assume that perturbations are bounded by a small
constant ¢ > 0 (i.e., ||A(t) — A(t)|| < ¢ for any ¢ > 0). Let
5\1 > 5\2 >0 > Xn(t) be the eigenvalues of the adjacency
matrix A(t) and

le(t) éjl(t) 2n(i)1(t)
2= | ) Zu(t) Znn)i(t)
éln(.t)(t) ZA’jn(;f) (t) Zn(tyn( (1)

be the matrix of eigenvectors. The eigenvector Z;(t) is
represented as a column vector and Z;,.(¢) denotes the "
entry of z;(t). The row vector (£1;(t), 22i(t), - -+, Zn()i(t))
represents the spectral coordinates of node ¢. For the network
G(t), we use the leading ¢ < n(t) eigenpairs to form the
set of suspects using the following procedure.

B. Identifying suspects in the spectral space

Every time window t,,, the algorithm estimates the spectra
of A(t), based on perturbations AA(t) = A(t) — A(t) =
A(t)— A(t—t,,). Using a first order approximation allows us
to update the eigenpairs \;(¢) and z;(t) of the matrix A(t),
without the need to recalculate the entire spectra (provided
perturbations are sufficiently small, i.e., bounded by the
constant ¢) [17]. This approximation yields

M) = M) + 2] (D[AA®)]24(2)
at) = 2W+Y 2] (H)[AA®)]24() ()
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Furthermore, the non-randomness of node i at time ¢ is
defined as

rilt) = 3 N0 (1) 0

j=1

where ¢ is the value that maximizes 5\q - 5\q+1. The expected
value and variance of the non-randomness of node 7 yields

Elry(t)] = kf(t@Em”
ki) ([, k(t)) s~ 1
+ T (0 n@));%(t) ®
A1) ki(t)\ < E[z3(1)]
Varlr;(t)] = n(t) (1_n(t)); A3(t)
262(0) (| k)) 5~ 1
v S () Tem ©

where E|[z;(t)] denotes the mean of z;(t).

Finally, given a probability p € [0,1], let n > 0 denote
the % quantile of the standard normal distribution (i.e.,
the quantile denotes the interval [—7,n] that covers the
probability p). For a fixed time ¢, node 7 belongs to the

suspect set if

(€D ri(t) < Elri(6)] + nVarlry(n)]"/? )

C. Filtering suspects based on clustering

The second part of the algorithm filters the proposed set of
suspects based on the average local clustering coefficient of
a node. In particular, node ¢ with local clustering coefficient
¢; belongs to the set of fraudsters if

(C2) >0 (®)

where 0 < 6 < 1 is a sensibility parameter that quantifies the
allowable deviations from eq. (3). Note that § = 0 means that
any deviation from the theoretical local clustering coefficient
mark a suspect as a fraudster. On the other hand, § = 1
means that a suspect will not be marked as a fraudster, even
if its actual local clustering is far from the expected value.
Because the condition is based on a local property, fraudsters
who want to avoid detection by forging strongly clustered
neighborhoods need to estimate the dynamic expression un-
derlying close-knit group formation, which is more difficult
because it evolves as a function of node degree. Note that in
general, the parameters 7, 6, and t,, need to be tuned based
on the properties of exposed fraudsters in the historical data.

V. SIMULATIONS

To gain better insight into the conditions for detection,
consider a network with n(0) = 30, m = 2, my = 2,
m’f =3, v =3 p =10, pao = 10, py = 0.1, and
p} = 0.1. Let the detection parameters be n = 3, § = 0.01,

and t,, = 200. Figure I(a) illustrates the node spectral

coordinates at ¢ = 1000. Regular users are represented by
circles and fraudsters by triangles. They are divided into
two communities (represented by the different colors). Most
users are distributed along two quasi-orthogonal lines in the
spectral space. Figure 1(b) shows the same plot for the
network at ¢ = 2000. Note that as the network grows it
becomes harder to identify fraudsters based solely on spectral
analysis.
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(a) Spectral coordinates at t = 1000.
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(b) Spectral coordinates at ¢ = 2000.

Fig. 1: Spectral coordinates for network data under collabo-
rative attacks at (a) ¢ = 1000; and (b) ¢ = 2000.

Next, fig. 2(a) shows the value of the node non-
randomness as a function of the degree. The solid line is
the detection threshold represented by to the upper bound in
eq. (7). The plot shows that it is hard to accurately identify
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fraudsters solely based on node non-randomness. Figure 2(b)
illustrates the same plot for the network at ¢ = 2000. As the
network evolves, it actually becomes even more dificult to
identify fraudsters.
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(a) Node non-randomness at ¢ = 1000.
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(b) Node non-randomness at ¢ = 2000.

Fig. 2: Node non-randomness for the network at (a) t =
1000; and (b) ¢t = 2000.

Figure 3(a) illustrates the corresponding ROC plot for
suspects for different values of 7 (i.e., the average rate of
true positives and false negatives over 10 different networks
of size ¢t = 2000). It shows that the first step of the algorithm
has high rates of false positives, which means that fraudsters
are able to hide among regular users. The value n = 0.5
minimizes the rate of false positives. Figure 3(b) illustrates

the ROC plot for the identified fraudsters for different values
of § for » = 0.5. The performance of the algorithm
improves as the value of 6 increases, which verifies that
for the clustering properties allow us to accurately identify
fraudsters in the second step of the algorithm.
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Fig. 3: ROC plot for (a) suspects; and (b) fraudsters.

Finally, Table I shows the performance of the algorithm
presented in [9] using the network substrate generated by our
model. Note that the percentage of false negatives is about
twice that of false positives. Compared to Table II, note that
the percentage of false positives based on (C1) and (C2) is
similar to the results in [9]. However, the percentage of false
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negatives vanishes as the network grows.

TABLE I: Results for the algorithm in [9]. The variable p
represents the rounded mean and o the standard deviation of
10 simulation runs.

Actual Potential ~ Detected % of false % of false
t |fraudsters fraudsters fraudsters positives negatives
plol p o u[o[pf[o]u]l o
200 {21 [ 2.8 | 115 | 59 [49|17.1 22 | 7.2 |81] 349
400 |40 [ 3.0 | 219 | 10.3 {97 [ 382 24 | 8.0 [92| 16.6
600 | 60 | 7.3 | 315 | 99 [195]74.6 | 30 | 9.6 |83 17.7
800 | 81 [10.0| 427 | 16.7 |222{106.8| 27 |11.1|81| 21.3
1000{104|10.0| 551 | 19.7 |312| 83.4 | 31 | 7.3 | 87| 12.1
1200(122|14.0| 641 | 26.7 |360| 98.4 | 30 | 7.0 | 87| 11.9
1400(145|12.1| 734 | 25.4 |461|110.0| 33 | 7.0 | 86| 16.8
1600{159]15.2 | 883 | 31.3 [503|140.7| 32 | 8.0 |87]| 10.1
1800{178] 9.7 | 994 | 20.8 |537(160.2| 31 | 8.6 |{89]11.43
2000(197(15.6 | 1107 | 23.5 |752|224.8| 38 | 10.1 |82 12.2

TABLE II: Results for the proposed algorithm. The variable
w represents the rounded mean and o the standard deviation
of 10 simulation runs.

Actual Potential ~ Detected % of false % of false
t |fraudsters fraudsters fraudsters positives negatives
plol p ] o p[o]p]o]p] o
200 {21 (32 [ 113 | 9.0 [73 |95 |31 [ 42 |63] 114
400 {39 | 7.3 | 211 | 9.0 [158| 84 | 34 | 2.3 |34] 83
600 | 60 | 9.6 | 323 | 10.6 238|13.1]| 34 | 29 [39| 54
800 | 83| 9.0 | 427 | 15.8 |326(13.8| 35 | 1.5 [25] 6.3
1000| 99 {10.7| 537 | 19.6 |412|19.2| 35 | 1.9 (22| 3.7
1200{126| 8.5 | 653 | 16.6 |508|21.4| 36 | 1.7 (20| 3.5
1400(141|14.4| 756 | 28.8 |576(31.1| 35 | 2.5 |{20| 3.5
1600{158]15.3| 874 | 24.4 1664|339 36 | 24 |21| 3.3
1800(179| 8.9 | 999 | 27.8 |785(32.8| 38 | 2.2 [19] 2.8
2000{202{10.1 | 1107 | 31.7 |857|30.2| 37 | 1.6 [17| 1.7

VI. CONCLUSIONS

This paper introduces a detection algorithm that uses both
spectrum-based and direct topological measures to differenti-
ate between the aggregate dynamics of fraudsters and regular
users. The generic notion of random link attacks charac-
terizes the behavior of fraudsters, while regular users tend
to form close-knit groups (highly clustered neighborhoods).
Taking into account the evolution of community structures
and clustering properties in the design of the algorithm,
allows us to identify fraudsters with a negligible percentage
of false negatives. The approach offers a novel perspective
on how fraud detection could exploit structural properties
of dynamic networks, and should be of interest to analysts
trying to detect structural anomalies in networks representing
a wide class of information and service exchanges. Extending
the detection procedure to evaluate networks with directed
links provides an important direction for future research.
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