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Abstract— Extended power laws and inhomogeneous connec-
tions are structural patterns often found in empirical networks.
Mechanisms based on the formation of triads are able to
explain the power law behavior of the degree distribution
of such networks. The proposed model introduces a two-step
mechanism of attachment and triad formation that illustrates
how preferential linkage plays an important role in shaping
the inhomogeneity of connections and the division of the
network into groups of nodes (i.e., the growth of community
structures). In particular, we identify conditions under which
the scaling exponent of the power law correlates to a widely-
used modularity measure of non-overlapping communities. Our
analytical results characterize the asymptotic behavior of both
the scaling exponent and the modularity, as a function of the
strength with which nodes with similar characteristics tend to
link to each other.

I. INTRODUCTION

Dynamic network models describe the evolution of struc-
tural properties of interconnected systems. Large networks
arise by the gradual addition of new members to an existing
set of nodes, often with a strong preference to attach to
nodes with similar characteristics (e.g., due to homophily).
The proximity between nodes and the neighbors of their
neighbors further shapes how nodes link to each other
over time. The premise that there are well-defined trends
underlying the emergence of particular network structures
lies at the heart of recent efforts to identify what principles
explain observable patterns found in empirical data.

There are striking similarities in the structure among
empirical networks that are otherwise quite different in their
nature. Understanding the relationships between structural
properties requires the development of models that charac-
terize each property and its evolution (e.g., to explain the
processes from which they may emerge). Highly clustered
networks, for example, are a particular class of models
where the networks share many close instead of distant
connections. They include technological (e.g., the Internet
[1], [2]), information (e.g., the World Wide Web [3]), social
(e.g., collaborations between authors [4]), and biological
systems (e.g., metabolic networks [5]).

All of these networks follow a single power law for a large
part of their probability degree distributions [6]-[8]. Two
well-known principles which lead to power law behavior are
preferential attachment [9] and triad formation [10]. Resting

solely on the assumption that a new node is more likely
to connect to nodes with a higher degree, mechanisms of
preferential attachment are not able to capture the clustering
properties of large networks. Triad formation mechanisms,
on the other hand, induce clustering by presuming that after
a new node randomly attaches to the network, there exists a
strong preference to link to other nodes in its neighborhood.
The work in [11], [12] deduces analytical expressions for
both the power law exponent and the global and local
clustering coefficients of networks models that evolve based
on triad formation. Moreover, it shows that under proper
conditions, the nodes of the network may divide into groups
(communities) with a higher density of edges within and a
sparser density between them [13].

Most of the work on network communities has focused on
(i) identifying and quantifying the strength of (overlapping
and non-overlapping) communities [14]-[16]; and (ii) devel-
oping dynamic models that explain their formation [17]-[21].
The model in [17] illustrates the formation of communities
in social networks based on the desire of individuals to
differentiate themselves from the average (i.e., a seceder
model). The work in [18] proposes a bipartite model that
leads to growing networks with well-defined communities.
In [19], community formation is studied through a model
based on social distance (i.e., interaction is based on a
decreasing function that quantifies the degree of closeness of
an individual towards others). The models in [20] and [21]
rest on refinements of preferential attachment that generate
community structures based on inner- and inter-community
measures.

While all the above models [11]-[21] illustrate a wide
range of mechanisms that drive the formation of commu-
nities, analytical results that characterize the relationship of
community structures to other structural properties and their
evolution are lacking (a noteworthy exception is the work
in [22], which illustrates that for a certain parameter range
the degree distribution and the size of emerging communities
both satisfy power laws). This paper introduces a two-step
mechanism of attachment and triad formation that captures
the interdependence between degree distributions and com-
munity structures. To our knowledge, the proposed model is
novel in that it generates directed networks in which triad
formation induces (i) extended power law behavior with
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a scaling exponent α ≥ 3 (i.e., a degree distribution that
follows a power law for nodes with a high degree); and
(ii) inhomogeneity of connections (i.e., a distinct community
structure with a modularity −0.5 ≤ Q ≤ 0.5). Our work
extends the results in [10] by verifying analytically that the
proposed mechanism of attachment and triad formation is
sufficient for the emergence of highly clustered power law
networks.

The remaining sections are organized as follows: Section 2
introduces a model that captures the connectivity dynamics
of a growing network. Theorem 1 in Section 3 shows that the
asymptotic behavior of the in-degree distribution follows a
power law distribution pk ∼ k−α above a certain threshold
ε and an exponential distribution pk ∼ e−λk otherwise. It
presents analytical results for the values of α, λ, and ε.
Theorem 2 yields an analytical expression for the value of
Q for networks that divide into two communities. Section 4
illustrates a particular criterion for defining the likelihood
with which nodes with similar characteristics may link to
each other during triad formation. Section 5 presents Monte
Carlo simulations that capture the effect of the combined
mechanism on the scaling behavior and the modularity of
the network. Finally, Section 6 draws some conclusions and
future research directions.

II. A NETWORK FORMATION MODEL

Let Ht = {1, . . . , Nt} be a finite set of interconnected
nodes at time index t. The set At = {(i, j) : i, j ∈
Ht} represents the relationships between nodes, where (i, j)
indicates that there exists a directed edge between nodes i
and j. Let Gt = (Ht,At) represent the network at time
index t. Assume that nodes tend to attract or repel each
other based on the assessment of a particular trait. In other
words, we view the network Gt as being composed of two
types of nodes denoted by δ ∈ {1, 2} where δi specifies
the type of node i. Two nodes are of the same type if they
share common characteristics (e.g., beliefs, values, status).
Let qi(t) = {j ∈ Ht : (j, i) ∈ At} represent all nodes that
link to node i at time t (i.e., its incoming neighbors). For
any node i ∈ Ht, let ki(t) = |qi(t)| represent the in-degree
of node i.

A. Node attachment

Every time index t a new node is added to the network
and it attaches to m different nodes. The type δj for the
new node j /∈ Ht−1 takes the value of 1 with probability 1

2 .
When node j attaches to the network, it connects to a node
j′ ∈ Ht−1 of the same type (δj = δj′) with probability pr
(and with probability 1− pr to a node of a different type).

B. Triad formation

Conditions for the formation of triad junctions are similar
to [10]. When node j /∈ Ht−1 attaches to some node
j′ ∈ Ht−1, it may also establish an additional link to
one of the outgoing neighbors of node j′. If j ∈ qj′(t)
and j′ ∈ qi(t) for some node i, node j links to node i
with probability xi(t), forming a triad whenever the event

occurs. The probability xi(t) that node j establishes an
additional edge to node i is influenced by δj and δi. A
multivariate random variable Xδ

t with a positive expected
value pδt = E[Xδ

t ] = f(σ1, · · · , σs)dσ1 · · · dσs captures
the likelihood of establishing a link between nodes j and
i, when σ1, · · · , σs are independent factors that influence
the process. Note that if the set of outgoing neighbors of
node j′ is a subset of the set of outgoing neighbors of node
j then there is no possibility of forming triads. The process
of triad formation repeats for every edge established by a
newly added node (m times) before another node attaches
to the network. Let Xδ = {Xδ

t } be the random process
associated to triad formation with stationary mean p∆ > 0.
To ensure that the two-step mechanism is well-defined we
require the following assumption.

Assumption 1: The initial network G0 is connected (qi(0) > 0
for all i ∈ H0) and every node has at least m neighbors
(N0 ≥ m). Moreover, if p∆ = 1 then each node in H0 must
have at least one outgoing neighbor.

III. ANALYSIS

The relationship between the in-degree distribution and
the modularity of the network rests on the following
characterizations of the asymptotic behavior of the network
(the proofs of Theorems 1 and 2 are presented in the
Appendix).

Theorem 1 (in-degree distribution): For all networks G0

that satisfy Assumption 1, the in-degree distribution pk of
Gt follows an extended power law as t → ∞. The scaling
exponent α = 1 + 1

τ where τ =
(
prp∆

1+p∆
+ (1−pr)(1−p∆)

2−p∆

)
and the exponential exponent λ = α

α−1 , with
threshold ε = (α− 1)m.

Theorem 1 implies that, as the network grows, the scaling
exponent of the in-degree distribution depends solely on the
preference to establish links between nodes of the same type
during node attachment and triad formation. The resulting
distribution follows a strict power law for nodes with a
degree greater than (α− 1)m.

Theorem 2 (community modularity): Given a network G0

that satisfies Assumption 1, the modularity Q of Gt tends to
a constant value that depends only on pr and p∆ as t→∞.

Theorem 2 implies that the modularity measure of com-
munities reaches a stationary value. As is the case for the
degree distribution, the community modularity depends on
the probability to connect to nodes of the same type.

IV. AN EXAMPLE

Similar to the work in [23], [24] we let the probability of
establishing additional links due to triad formation be

xi(t) =

{
p∆ − c

uki
, if δj = δi

(1− p∆)− c
uki

, if δj 6= δi
(1)
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where u captures the compatibility between nodes and is
chosen from a uniformly random distribution with support
on [0, 1] (in other words the random variable Xδ

t takes values
xi(t)). The parameter c, 0 < c < u, represents the cost of
establishing additional links and 0 ≤ p∆ ≤ 1. The expected
value of Xδ

t at time t is given by

pδt =


∫∞

0

∫ 1

0

(
p∆ − c

uki(t)

)
pupk du dki, if δj = δi∫∞

0

∫ 1

0

(
(1− p∆)− c

uki(t)

)
pupk du dki, if δj 6= δi

(2)
where pu = 1

u and pk is the probability distribution of ki(t).
If δj = δi the process of triad formation has a stationary
mean p∆ (i.e., equation (2) converges to p∆). Otherwise, if
δj 6= δi it has stationary mean 1− p∆.

V. SIMULATIONS

To gain insight into the network formation dynamics,
let N0 = 20, c = 0.1u and consider xi(t) as defined in (1).
Figure 1(a) shows the in-degree distribution of the network at
t = 105 for pr = 1.0 and different values of p∆. For nodes
with a low degree, the complementary cumulative degree
distribution follows an exponential form with λ = 3

2 (for
p∆ = 0.5, α = 4 and λ = 4

3 ). In particular, the equation
ε = (α−1)m characterizes the transition from an exponential
to a power law distribution.

Figure 1(b) illustrates the dependence of the scaling expo-
nent on pr and p∆. Note that a very strong or a very weak
tendency to link similar nodes for both node attachment and
triad formation generates networks with a scaling exponent
below 3.5. On the other hand, when one probability is large
but the other small, the scaling exponent of the resulting
network is above 4.5.

Figure 2(a) shows the evolution of the modularity of
the network for different values of pr and p∆. The dots
represent simulation results; the solid lines are the theoretical
prediction derived from Theorem 2. As the network grows
the modularity tends to a stationary value that depends
solely on pr and p∆ for any initial network. Figure 2(b)
shows the value of the modularity Q for different values
of pr and p∆. Note that if pr = 1 then Q = 0.5. Not
surprisingly, p∆ has no impact on the modularity during
random attachment when nodes only connect to other nodes
of the same type (see Case 1 in the proof of Theorem 2).
Overall, fig. 2(b) suggests that pr has a stronger impact on
the modularity than p∆. However, note that for high values
of pr, increasing p∆ can still have a noticeable effect. The
highlighted region illustrates the parameter regime where the
network has modularity 0.3 ≤ Q ≤ 0.5 as often found in
empirical data [16].

Next, fig. 3 shows the modularity of the network for
different values of pr when p∆ = 1. It confirms that
increasing the likelihood to link similar nodes during random
attachment strongly impacts the modularity of the resulting
network even if during triad formation nodes always connect
to nodes of the same type (see Case 2 in the proof of
Theorem 2).
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Fig. 1: (a) Complementary cumulative in-degree distribution
pk. The solid lines are the theoretical predictions based on
(5); the dots represent distributions from simulations for
different values of pr and p∆; and (b) Scaling exponent for
different values of pr and p∆.

Finally, fig. 4 characterizes the relationship between mod-
ularity Q and the scaling exponent α. Note that for certain
parameters there is a strong correlation, but it may be positive
or negative depending on their values. Table I describes the
range of pr values used to generate the relationships in fig. 4
for a constant preferential linkage during triad formation.
For negative correlations (i.e., for lines l4 − l8) the model
produces similar results as the empirical measures in [25].
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Fig. 2: (a) Modularity for different values of pr and p∆. The
solid lines are the theoretical prediction from Theorem 2; the
dots represent the simulated behavior of the modularity over
time; and (b) Contour plot of the modularity measure as a
function of pr and p∆.

VI. CONCLUSIONS

This paper introduces a dynamic network model that
captures the relationship between degree distributions and
community structures based on a simple two-step mecha-
nism: (i) a step of attachment in which a newly added node
links to nodes of the same type with probability pr; and (ii)
a step of triad formation in which the newly added node
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Fig. 3: Modularity of the network for p∆ = 1 and different
values of pr.
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Fig. 4: Relationship between the modularity Q and the
scaling exponent α for different values of pr and p∆. Table I
shows the parameter regime for the resulting lines.

TABLE I: Parameter regime for the correlations in fig. 4.

Type of correlation Range of pr p∆

l1 Positive [0.83,1] 0.3
l2 Positive [0.80,1] 0.4
l3 − [0.78,1] 0.5
l4 Negative [0.76,1] 0.6
l5 Negative [0.73,1] 0.7
l6 Negative [0.71,1] 0.8
l7 Negative [0.68,1] 0.9
l8 Negative [0.65,1] 1.0
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may establish an additional link to one of the neighbors of
the node it attaches to with probability p∆.

The proposed mechanism is of interest because the cor-
relation between the degree distribution and the community
structure resembles empirical network data. Characterizing
the relationship between community structure and local clus-
tering coefficient provides an important direction for future
research.

VII. APPENDIX
Proof of Theorem 1. We assume that the in-degree of node
i is a continuous variable ki ∈ R, ki > 0. Every time step t
a newly added node j /∈ Ht−1 attaches to m different nodes
in Ht−1, selected according to a uniform distribution process
over the N0+ t−1 existing nodes. The probability that node
j attaches at time t to an existing node i ∈ Ht−1 is

prm

N0 + t− 1
+

(1− pr)m
N0 + t− 1

=
m

N0 + t− 1

The triad formation step that follows random attachment adds
to the rate of change of node i with in-degree ki(t− 1) by(

prmki(t)

N0 + t− 1

)(
1

m(1 + p∆)

)
p∆

+

(
(1− pr)mki(t)
N0 + t− 1

)(
1

m(1 + (1− p∆))

)
(1− p∆)

=

(
ki(t)

N0 + t− 1

)(
prp∆

m(1 + p∆)
+

(1− pr)(1− p∆)

m(1 + (1− p∆))

)
The terms prmki(t)

N0+t−1 and (1−pr)mki(t)
N0+t−1 are the probabilities of

selecting, during random attachment, an incoming neighbor
of node i of the same type or different type respectively
(i.e., some node j′ ∈ qi(t)). Additionally, the terms 1

m(1+p∆)

and 1
m(1+(1−p∆)) are the probabilities that node j′ is an

incoming neighbor of node i of the same type or different
type respectively (i.e., j′ ∈ qi(t)). Finally, the probability p∆

and (1− p∆) are the stationary mean of the random process
of forming triads when nodes are of the same or different
type. The multiplication of all 3 terms define the probability
of forming a triplet with an edge that contributes to the in-
degree of node i. The overall rate of change of ki(t) is

dki(t)

dt
=

m

N0 + t− 1

+

(
prp∆

1 + p∆
+

(1− pr)(1− p∆)

2− p∆

)
ki(t)

N0 + t− 1
(3)

with boundary condition ki(ti) = 0. The solution to (3) is

ki(t) =
(m
τ

)( N0 + t− 1

N0 + ti − 1

)τ
− m

τ
(4)

with τ =
(
prp∆

1+p∆
+ (1−pr)(1−p∆)

2−p∆

)
. Using (4), the analytical

expression for the cumulative distribution of the in-degree
P [ki(t) ≤ k] of node i equals

P

[(m
τ

)( N0 + t− 1

N0 + ti − 1

)τ
− m

τ
≤ k

]
= P

[
ti ≥

( m
τ

k + m
τ

) 1
τ

(N0 + t− 1)− (N0 − 1)

]

And as t→∞

P [ki(t) ≤ k] = 1−
( m

τ

k + m
τ

) 1
τ

(5)

Finally,

pk =
dP [ki(t) ≤ k]

dk
=

1

τ

(m
τ

) 1
τ
(
k +

m

τ

)−(1+ 1
τ ) (6)

Note that (6) exhibits the extended power law of the form

pk ∼ (k + ε)−α

where α = 1 + 1
τ and ε = (α− 1)m. When k � ε, (6) is

reduced to a single power law pk ∼ k−α. On the other hand,
when k � ε we have

ln pk ∼ −α ln(k + ε) = −α
[
ln

(
1 +

k

ε

)
+ ln ε

]
∼ −α

[
k

ε
+ ln ε

]
and obtain

pk ∼ ε−α exp
(
−αk

ε

)
Thus, (6) is proportional to the exponential form pk ∼
exp(−λk) with λ = α

α−1 .

Proof of Theorem 2. To measure the modularity Q in the
formation of communities we use the metric defined in
[15]. Let e be a 2 × 2 matrix whose element eij represents
the fraction of edges that connect the nodes in two non-
overlapping communities i and j. The trace Tr e =

∑
i eii

gives the fraction of the links in the network that connect
nodes in the same community. The row (or column) sums
ai =

∑
j eij represents the fraction of links with at least

one node in community i. It can be shown that if edges
are build randomly (without considering communities) then
eij = aiaj [14]. The modularity Q measures the number of
edges within each community minus the expected number of
such edges if they fall randomly between the nodes and is
defined as

Q =
∑
i

(eii − a2
i ) = Tr e− ‖e2‖ (7)

where ‖e‖ indicates the sum of the elements of the matrix e.
To calculate the fraction of edges that connect every type of
nodes, we consider two possible scenarios for the dynamic
evolution of (i) the number of links that connect nodes of the
same type; and (ii) the number of links that connect nodes
of different type. In scenario (i), there are an expected

m(pr + prp∆)t+ e0
ii (8)

number of links between nodes of the same type, where e0
ii

is the amount of links between nodes of the same type in
the initial network G0.
In scenario (ii), the number of links created between nodes
of different type is

m ((1− pr) + (1− pr)(1− p∆)) t+ e0
ij (9)
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where e0
ij is the amount of links between nodes of different

type in the initial network G0. The total amount of links
created in the network depends on the dynamic behavior of
the in-degree of the nodes (equation. (4)). The sum over all
nodes can be written in the integral form as

d(t) =

∫ t

1

{(m
τ

)( N0 + t− 1

N0 + ti − 1

)τ
− m

τ

}
dti (10)

Finally we can express the matrix e as 0.5 times m(pr+prp∆)t+e0ii
d(t)+e

m((1−pr)+(1−pr)(1−p∆))t+e0ij
d(t)+e

m((1−pr)+(1−pr)(1−p∆))t+e0ij
d(t)+e

m(pr+prp∆)t+e0ii
d(t)+e


where e =

∑
i∈H0

qi(0) is the initial number of edges in
G0. The factor of 0.5 comes from the fact that the expected
type of node of an incoming node is equal for both types.
In general, as t→∞ the value of Q tends to a constant that
depends on the link acquisition tendency of the two-step
mechanism of attachment and triad formation, pr and
p∆. Consider the following values for pr and p∆ which
represent particular cases of interest.

Case 1 (Full preference during random attachment): When
pr = 1

Q = lim
t→∞

∑
i

(eii − a2
i ) = lim

t→∞
Tr e− ‖e2‖ = 0.5 (11)

Case 2 (Full preference during triad formation): When
p∆ = 1

Q = −0.125p4
r + 0.25p3

r

− 0.625p2
r + 1.5pr − 0.5 (12)

Note that (12) correspond to the plot shown in fig. 3.
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[19] M. Boguñá, R. Pastor-Satorras, A. Dı́az-Guilera, and A. Arenas,
“Models of social networks based on social distance attachment,”
Phys. Rev. E, vol. 70, no. 5, p. 056122, 2004.

[20] C. Li and P. K. Maini, “An evolving network model with community
structure,” J. Phys. A: Math. Gen., vol. 38, no. 45, pp. 9741–9749,
2005.

[21] C. Li and G. Chen, “Modelling of weighted evolving networks with
community structures,” Physica A, vol. 370, no. 2, pp. 869–876, 2006.

[22] M. H. Li, S. G. Guan, and C.-H. Lai, “Formation of modularity in a
model of evolving networks,” Europhys. Lett., vol. 95, no. 5, p. 58004,
2011.

[23] M. O. Jackson and B. W. Rogers, “Meeting strangers and friends of
friends: How random are social networks?,” Am. Econ. Rev., vol. 97,
no. 3, pp. 890–915, 2007.

[24] A. Papoulis, Probability, Random Variables, and Stochastic Processes.
McGraw Hill Higher Education, 4th ed., 2002.

[25] Z. Lai, J. Su, W. Chen, and C. Wang, “Uncovering the properties of
energy-weighted conformation space networks with a hydrophobic-
hydrophilic model,” Int. J. Mol. Sci., vol. 10, no. 4, pp. 1808–1823,
2009.

2388


