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Abstract— Based on the formation of triad junctions, the
proposed mechanism generates growing networks that exhibit
extended power law behavior and strong neighborhood cluster-
ing. The asymptotic behavior of both properties is of interest
in the study of networks in which (i) the formation of links
cannot be described according to the principle of preferential
attachment; (ii) the in-degree distribution fits a power law for
nodes with a high degree and an exponential form otherwise;
and (iii) the degree of clustering depends on both the number
of links that newly added nodes establish and the probability
of forming triads.

I. INTRODUCTION
Networks are systems composed of multiple-coupled, but

well-defined elements (nodes) that display collective behav-
iors at higher levels of analysis. Large networks arise by the
gradual addition of elements which attach to an existing and
often evolving network component. With our modern access
to data, the application of network techniques offers a wide
set of mathematical tools to visualize data at both levels,
that of the data elements and the interaction between them.
These tools allow us to characterize higher-level properties
of the structure of a system and to identify different types
of patterns in the relationships among elements.

The development of models that describe the evolution
of networks has been driven by the need to analyze large
amounts of relational data across a wide range of fields. Well-
known examples include the study of relationships we see in
scientific collaborations [1], court opinions [2], export goods
[3], traffic [4], social ties [5], stocks [6], and patent citations
[7]-[9]. Trying to address the question of how particular
topologies arise as networks grow, a large body of work has
been devoted to understand the emergence of two properties:
the distribution of links per node (degree distribution) and
the proportion of links grouped into local neighborhoods
(clustering or transitivity) [10], [11].

In extended power law networks, the probability pk that
a node with a low degree of connectivity (below some
threshold ε) connects to k other nodes fits an exponential
form e−λk for some positive constant λ. For nodes with a
high degree, the probability pk is proportional to the power
law function k−α for some positive constant α. Because the
tail of the probability distribution of the degree of the nodes
has no exponential bound, the patterns of interaction in power
law networks differ in orders of magnitude, with a few nodes
being highly connected. Mechanisms leading to power law
networks have been overviewed in [12]. A particular class
of mechanisms in which nodes with a high degree have a

greater probability of acquiring new links (attributed to the
principle of preferential attachment) has been proposed to
explain the scaling behavior in empirical data [13], [14].

In clustered networks, the probability of finding transitive
triplets is higher than the outcome expected through random
chance. If a node connects to two other nodes, clustering
captures the probability that these two nodes are connected,
too. In a network with high clustering, nodes do not interact
homogeneously with other nodes, but tend to influence each
other locally (i.e., they form strong neighborhood clusters
[15]). Common measures of clustering are based on (i) the
total number of transitive triplets relative to the total number
of possible triplets in the network, represented by a global
clustering coefficient C [11]; or (ii) the fraction of triplets
connecting the neighboring nodes of node i over the total
number of possible triplets, represented by a local clustering
coefficient Ci [16]. Real-world networks show clustering
coefficients that are generally independent of the size of the
network and scale with the degree of the nodes [17].

Though preferential attachment offers an explanation for
the existence of networks with power law degree distribu-
tions, it does not, by itself, explain the formation of strong
neighborhood clusters. Clustering coefficients tend to vanish
with the continuous addition of new nodes to a network
(based on both local and global preferential attachment
mechanisms [18]). The development of alternative models
that can explain strong neighborhood clustering as the natural
outcome of the process of growth contributes towards estab-
lishing a framework that supports the analysis and broadens
our understanding of the clustering behavior of power law
networks.

Based on the principle of preferential attachment, the
authors of [19], [20] introduce a baseline probability of
establishing additional links by a process of triad forma-
tion. They generate undirected networks with tunable degree
distribution and clustering properties. In [20] the authors
deduce analytical results based on conditions underlying
local attachment mechanisms. Unlike [19], [20] the work
in [21] explains power law behavior in networks in which
the formation of links does not necessarily depend on pref-
erential attachment. The attachment of new nodes results
according to a uniform random distribution followed by
the formation of triad junctions. Like [21] the formation
mechanism in this paper does not instantiate the principle of
preferential attachment, focusing on conditions that generate
extended, rather than single, power law distributions [22],
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[23].
The contribution of the proposed mechanism is twofold.

First, it explains scaling behavior in networks with an ex-
tended power law in the in-degree distribution of the nodes
(extended power laws are in some contexts a better fit than
single or double power laws, e.g., to describe the degree
distribution of online social networks [24] and patent citation
networks [8]). Our results characterize the relation between
the scaling exponent and the probability of forming triads.
Moreover, the transition from exponential to power law
distributions depends on both the scaling exponent and the
number of links that newly added nodes establish. Second,
the proposed mechanism accounts for strong neighborhood
clustering based on a random triad formation process with
a positive stationary mean. Clustering properties remain
constant as the size of the network grows.

The remaining sections are organized as follows: Section 2
introduces a network model that captures generic connec-
tivity dynamics. Theorem 1 in Section 3 shows that the
resulting in-degree distribution follows a power law above a
certain threshold ε and an exponential distribution otherwise.
We present analytical results for the values of α, λ, and
ε. Theorem 2 characterizes the evolution of both clustering
coefficients and presents analytical expressions for C and
Ci. Simulations in Section 4 capture the effect of triads on
the scaling exponent and the clustering coefficients. Finally,
Section 5 draws some conclusions and future research direc-
tions.

II. A NETWORK FORMATION MODEL

Let Ht = {1, . . . , Nt} be a finite set of interconnected
nodes at time index t. The set of edges At = {(i, j) : i, j ∈
Ht} represents the relationships between nodes, where (i, j)
indicates that there exists a directed edge between nodes i
and j. Let Gt = (Ht,At) represent the network. Let qi(t) =
{j ∈ Ht : (j, i) ∈ At} represent all nodes that link to node i
at time t (i.e., its incoming neighbors). For any node i ∈ Ht,
let ki(t) = |qi(t)| represent its in-degree.

A. Node attachment

The network grows by the gradual addition of nodes.
Every time index t a new node attaches to m different nodes,
selected according to a uniformly random distribution over
Ht−1. Let n ≥ 0 denote the amount of edges established
from nodes in Ht−1 to the newly added node, according
to some mechanism that responds to the attachment of the
node. If there is no such response underlying the attachment
process then n = 0.

B. Triad formation

Conditions for the formation of triad junctions are
similar to the ones introduced in [19]. When node
j /∈ Ht−1 attaches to some node j′ ∈ Ht−1, it
may also establish an additional link to one of the
outgoing neighbors of node j′, selected again according
to a uniformly random distribution. If j ∈ qj′(t) and
j′ ∈ qi(t), node j links to node i with probability

xi(t). The value of xi(t) is subject to a multivariate
random variable Xt with a positive expected probability
pt = E[Xt] =

∫
·· ·
∫
f(σ1, σ2, · · · , σs)dσ1 dσ2 · · · dσs,

where σ1, σ2, · · · , σs are independent factors that
influence the formation of triads. Note that if all the
outgoing neighbors of node j′ are a subset of the outgoing
neighbors of node j then there is no possibility of
establishing additional links through triad formation. Let
X = {Xt} be the associated random process with stationary
mean p > 0. The process of triad formation repeats itself
for each edge established during the attachment step (m
times) before another node joins the network.

Assumption 1 (on the initial network): To ensure the
two-steps of node attachment and triad formation can be
properly completed, we require that (a) the network G0 is
weakly connected; and (b) the network G0 has at least m
nodes, each with at least one outgoing neighbor.

Assumption 1(a) is satisfied if replacing all the directed
edges with undirected ones produces a connected undirected
graph. Assumption 1(b) means that N0 ≥ m and for every
node i ∈ H0 there exists a node i′ such that i ∈ qi′(0). This
last condition is required when p = 1.

III. ANALYSIS

It is of interest that the proposed mechanism guarantees
stationary values for both the in-degree distribution and
the clustering coefficient of the network. The proofs of the
following theorems are presented in the Appendix.

Theorem 1 (in-degree distribution): For all G0 that satisfy
Assumption 1, the in-degree distribution pk of Gt follows
an extended power law as t → ∞. The scaling exponent
α = 2 + 1

p and the exponential exponent λ = α
α−1 with

threshold ε = (α− 1)m.

Theorem 1 implies that, as the network grows, the scaling
exponent of the in-degree distribution depends on the
stationary mean of the process of forming triads. The
distribution follows a strict power law for nodes with
a degree greater than (α− 1)m and an exponential fit
otherwise. Figure 1(a) shows the value of the scaling
exponent α for different values of p. Note that the the
proposed mechanism allows α ≥ 3.

Theorem 2 (clustering coefficients): For all G0 that satisfy
Assumption 1, the global clustering coefficient of Gt tends
to C = p

m(1+p)2 as t→∞. The asymptotic behavior of the
local clustering coefficient for a node with in-degree ki = k
follows

Ci(k) =
2
(
k + pm+ (2 + p− α) ln

(
k+ε
n+ε

))
(k + pε) (k + pε− 1)

Theorem 2 implies that C and Ci are both independent of
the initial network configuration and the size of the growing
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network (i.e., clustering coefficients do not vanish). Fig-
ure 1(b) shows the value of the global clustering coefficient
C for different values of m. Note that there exists an inverse
relationship between the clustering behavior and the amount
of edges established at every random attachment (m).
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Fig. 1: (a) Scaling exponent α for different values of p; and
(b) global clustering coefficient C for different values of p
and m.

Moreover, note that for nodes with a low degree, high values
of α tend to form strong neighborhood clusters (below pε).
Figure 2(a) shows the effect of α on the local clustering
coefficient. For nodes with a high degree, the effect is
opposite and the local clustering coefficient is proportional
to k−1 (a behavior observed in empirical data [17]). Like for
the global clustering coefficient, fig. 2(b) shows an inverse
relationship between the average clustering coefficient Cav =∫∞
n
pkCi(k)dk and m. Finally, note that the average cluster-

ing coefficient is slightly greater than the global clustering
coefficient (also observed in empirical measures of clustering
[11]).

IV. SIMULATIONS

To gain insight into the outcome of the network formation
process, let N0 = 12, n = 1, c = 0.1u, and consider
t = 105. Following similar ideas as in [21], [25], let
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(a) Local clustering coefficient.
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Fig. 2: (a) Local clustering coefficient Ci(k) for different
values of the scaling exponent α with m = 1 and n = 1;
and (b) average clustering coefficient for different values of
p and m with n = 1.

the probability of establishing additional links due to triad
formation be xi(t) = 1 − c

uki(t)
, where u captures the

compatibility between nodes and is chosen from a uniformly
random distribution with support on [0, 1] (i.e., the random
variable Xt takes values xi(t)). The parameter c, 0 < c <
u, represents the cost of establishing additional links. The
expected value of Xt at time t is given by

pt = E[Xt] =

∫ ∞
n

∫ 1

0

(
1− c

uki(t)

)
pupk du dki (1)

where pu = 1
u and pk is the probability distribution of ki(t)

presented in Theorem 1. It can be shown that (1) converges
to 1 for n > 0 and m > 0. As a result, the process of triad
formation has stationary mean p = 1.

Next, fig. 3 shows the in-degree distribution of the nodes of
the network for different values of m. For nodes with a low
degree, the complementary cumulative degree distribution
deviates from the power law behavior with α = 3 and degen-
erates into the exponential form with λ = 3

2 . In particular,
ε = 2m characterizes the transition from exponential to
power law distributions.
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Fig. 3: (a) Complementary cumulative distribution function
of the in-degree distribution pk on a logarithmic scale. The
solid lines are the predictions from (4); the dots represent
distributions from simulations; and (b) predictions from (4)
for different values of m.

With respect to clustering, fig. 4 shows the value of the
local coefficient Ci(k) for different values of m. Note that for
values greater than 2m the clustering behavior has a tendency
Ci(k) ∼ k−1.

V. CONCLUSIONS

This paper introduces a mathematical framework that gen-
erates extended power law distributions with constant clus-
tering coefficient based on two stages: (i) a node attachment
step in which a newly added node links to a finite number
of randomly selected nodes; and (ii) a triad formation step
in which the new node may establish an additional link
to one of the neighbors of the node it attaches to. The
proposed mechanism is of interest because it helps explain
the existence of extended power law networks with clustering
properties that do not vanish as the size of the network grows.
Network substrates with a desired scaling and clustering
behavior allow us to evaluate which principles lie behind
the formation of relationships in large amounts of data. The
study of growth processes that lead to community structures
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Fig. 4: Clustering coefficient C(k) for (a) m = 3; and (b)
m = 5. The solid lines are the predictions from (14); the dots
represent the clustering coefficients of the generated network.

on clustered networks provides an important direction for
future research.

VI. APPENDIX

Proof of Theorem 1. We assume that the in-degree of node
i is a continuous variable ki ∈ R, ki > 0. Every time step
t a newly added node j /∈ Ht−1 attaches to m different
nodes in Ht−1, selected according to a uniform distribution
process over the N0 + t− 1 existing nodes. The probability
that node j attaches at time t to an existing node i ∈ Ht−1
with in-degree ki(t− 1) is

m

N0 + t− 1

The triad formation that follows the random attachment step
adds to the rate of change of the in-degree of node i by(

mki(t)

N0 + t− 1

)(
1

m(1 + p)

)
p

The term mki(t)
N0+t−1 is the probability of selecting, during the

random attachment step, an incoming neighbor of node i
(i.e., some node j′ ∈ qi(t)). Additionally, the term 1

m(1+p)

is the probability that node j′ is an incoming neighbor of
node i (i.e., j′ ∈ qi(t)). Finally, the probability p is the
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stationary mean of the random process of forming triads. The
multiplication of these three terms define the probability of
forming a triplet with an edge contributing to the in-degree
of node i. The overall rate of change of ki(t) is given by

dki(t)

dt
=

m

N0 + t− 1
+

p

1 + p

ki(t)

N0 + t− 1
(2)

with boundary condition ki(ti) = n. The solution to (2) is

ki(t) =

(
n+

(
1 +

1

p

)
m

)(
N0 + t− 1

N0 + ti − 1

) p
1+p

−
(
1 +

1

p

)
m (3)

Using (3), the analytical expression for the cumulative dis-
tribution of the in-degree P [ki(t) ≤ k] of node i equals

P

[(
n+

(
1 +

1

p

)
m

)(
N0 + t− 1

N0 + ti − 1

) p
1+p

−
(
1 +

1

p

)
m ≤ k

]

= P

ti ≥
n+

(
1 + 1

p

)
m

k +
(
1 + 1

p

)
m

1+ 1
p

(N0 + t− 1)

− (N0 − 1)]

As t→∞

P [ki(t) ≤ k] = 1−

n+
(
1 + 1

p

)
m

k +
(
1 + 1

p

)
m

1+ 1
p

(4)

Finally,

pk =
dP [ki(t) ≤ k]

dk
= a

(
k +

(
1 +

1

p

)
m

)−(2+ 1
p )

(5)

with a =
(
1 + 1

p

)(
n+

(
1 + 1

p

)
m
)1+ 1

p

. Note that (5)
exhibits an extended power law of the form

pk ∼ (k + ε)−α

with α = 2 + 1
p and ε = (α− 1)m. When k � ε, (5) is

reduced to a single power law pk ∼ k−α. On the other hand,
when k � ε we have

ln pk ∼ −α ln(k + ε) = −α
[
ln

(
1 +

k

ε

)
+ ln ε

]
∼ −α

[
k

ε
+ ln ε

]
and obtain

pk ∼ ε−α exp
(
−αk

ε

)
Thus, (5) is proportional to the exponential form pk ∼
exp(−λk) with λ = α

α−1 .

Proof of Theorem 2. Note that the only configuration to
form transitive triplets is when node j /∈ Ht attaches to

j′ ∈ Ht such that j ∈ qj′(t) and there exists a node i ∈ Ht
such that j′ ∈ qi(t). A triad is formed if node j establishes
a third edge to node i that connects nodes j, j′, and i.
The probability of establishing the third edge that closes the
triplet is pm. Moreover, when node j entered the network,
it connected to m(1 + p) outgoing neighbors (because node
j established m edges according to the random attachment
process and then established additional edges with probabil-
ity pm according to the process of triad formation). Each
outgoing neighbor of node j also has m(1 + p) outgoing
neighbors. Thus, there are m2(1+p)2 possible pairs to form
triplets. The global clustering coefficient is characterized by

C =
pm

m2(1 + p)2
=

p

m(1 + p)2
(6)

Next, to capture the local clustering coefficient of a node
i, note that the number of possible pairs of incoming and
outgoing edges of node i (with in-degree ki = k) is given
by (

k +m(1 + p)

2

)
=

(k +m(1 + p))(k +m(1 + p)− 1))

2
(7)

Equation (7) captures the total number of possible triplets
that involve node i. Now, to capture the number of actual
triplets that involve the node i, we consider three possible
scenarios about the edges that may lead to triad formation:
Node i has (i) two outgoing edges; (ii) an outgoing edge and
an incoming edge established through random attachment;
and (iii) two incoming edges with at least one of them
having been generated through triad formation.
In scenario (i), there are an expected

pm (8)

connected triplets.
In scenario (ii), the number of incoming edges created
through random attachment is

dk∗i (t)

dt
=

m

N0 + t− 1
(9)

with initial condition k∗i (ti) = 0 (note that at t = ti the
newly added node i cannot have incoming edges established
through random attachment). The solution to (9) is

k∗i (t) = m ln

(
N0 + t− 1

N0 + ti − 1

)
(10)

Moreover, using (3) we also know that for node i with in-
degree ki(t) = k

(
N0 + t− 1

N0 + ti − 1

)
=

k +
(
1 + 1

p

)
m

n+
(
1 + 1

p

)
m

1+ 1
p

(11)

Replacing (11) in (10) we know

k∗i =

(
1 +

1

p

)
m ln

k +
(
1 + 1

p

)
m

n+
(
1 + 1

p

)
m
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Note that the probability of establishing the third edge that
closes the triplet is(

1 +
1

p

)
m ln

k +
(
1 + 1

p

)
m

n+
(
1 + 1

p

)
m

 p (12)

For scenario (iii), the number of incoming edges established
through triad formation is given by

k −
(
1 +

1

p

)
m ln

k +
(
1 + 1

p

)
m

n+
(
1 + 1

p

)
m

 (13)

which is the probability of establishing the third edge that
closes the triplet. Finally, summing (8), (12), and (13) and
dividing by the right hand side of (7), we know Ci(k) equals

2

(
k + pm

(
1 +

(
1− 1

p2

)
ln

(
k+(1+ 1

p )m
n+(1+ 1

p )m

)))
(k + (1 + p)m) (k + (1 + p)m− 1)

=
2
(
k + pm+ (2 + p− α) ln

(
k+ε
n+ε

))
(k + pε) (k + pε− 1)

(14)

where α = 2 + 1
p and ε = (α− 1)m.
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