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Abstract

The increasing threat of insider attacks has resulted in a correlated increase in incentives to mon-
itor trusted insiders. Measures of volumes of access, detailed background checks, and statistical
characterizations of employee behaviors are all commonly used to mitigate the insider threat. These
traditional approaches usually rely on supervised learning models or case studies to determine the
critical features or attributes that can be used as indicators. Such approaches require labeled data
for correct characterization of the threat. Yet regardless of the incentives to detect the insider threat,
the incentives to share detailed labeled data on successful malicious insiders have proven inadequate.
To address this challenging data environment, we developed an innovative approach that captures
the temporal evolution of user-system interactions, to create an unsupervised learning framework
to detect high-risk insider behaviors. Our method is based on the analysis of a bipartite graph of
user and system interactions. The graph mining method detects increases in potential insider threat
events following precipitating events, e.g., a limited restructuring. We apply our method to a dataset
that comprises interactions between engineers and components in a software version control system
spanning 22 years, and automatically detect statistically significant events. We find that there is sta-
tistically significant evidence for increasing anomalies in the committing behavior after precipitating
events. Although these findings do not constitute detection of insider threat events per se, they rein-
force the idea that insider operations can be motivated by the insiders’ environment and detected with
the proposed method. We compare our results with algorithms based on volume-dependent statistics
showing that our proposed framework outperforms those measures. This graph mining method has
potential for early detection of insider threat behavior from user-system interactions, which could
enable quicker mitigation.

Keywords: Anomaly detection, insider threat, bipartite graph, graph mining, community structure,
IBM Rational ClearCase

1 Introduction

Insiders are employees that must be trusted with access to sensitive information, and because of that
trust can be a major threat. Insiders have compromised organizations in multiple domains including
manufacturing [2], finance [3], government [4], and even scientific research [5]. Even worse, insiders
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attacks are consistently catalogued as the most costly given the elevated privilege that insiders have in
terms of trust and access [6]. This makes the insider issue one of the most challenging problems in
computer security [7].

As with many other complex systems (e.g., the Internet, online social networks, and the brain),
information systems consist of a large number of interacting elements (e.g., users, services, devices, files)
in which the aggregate activity of the system cannot be derived by analyzing individual contributions,
i.e., their aggregate behavior is nonlinear. Graphs, where nodes represent the elements and edges capture
the interactions between the elements of the system, have been used across multiple domains to capture
the interactions between the elements of complex systems [8, 9]. The use of graphs to study the structure
of complex systems has revealed some plausible explanations for the emergence of collective behavior in
these systems such as the understanding of regular and anomalous behavior [10]. In this work, we treat
the malicious insider as an anomaly and use bipartite graphs to detect their anomalous behaviors.

The resulting focus on malicious patterns, as opposed to malicious nodes, implements an assumption
that the malicious insider is not intrinsically hostile. Rather, malicious behaviors can emerge over time
or in respect to specific conditions. Static graphical analysis is based on the analysis of graph snapshots
and cannot integrate temporal patterns. In contrast, the study of temporal graphs, where information
of single graph snapshots is aggregated, tends to reflect more accurately the evolution of the system as
nodes and edges appear and disappear over time [11, 12]. The focus of this work is to understand the
malicious behaviors over time rather than identifying the static malicious nodes.

To understand such complex systems, empirical data with detailed temporal information is a prereq-
uisite. Correct temporal information is much more readily available as a source of ground truth than
correctly labeled insider threat datasets. In the context of information systems, temporally annotated
datasets are widely available thanks to the presence of user-system interaction logs. This enables the
use of graph mining analytics for the understanding of anomalous behavior such as the one that insiders
might pose [13, 14].

For the purposes of this paper, we characterize and detect anomalous events in an information system
based on a centralized version control system1. We identify time intervals during which significant
changes in the structure of the temporal graphs may correspond to functional change points, e.g., a
precipitating event2. This problem has also been referred to as change point detection [16].

We model user-system interactions in a version control system as a temporal bipartite graph where
interactions occur exclusively between two types of nodes, (i) users and (ii) software components3. Note
that the edges in this graph are only between these two types of nodes [17]. A one-mode projection of
this graph is the user graph in which two nodes (users) are connected if they have interacted at least once
with the same component [18]. Our methodology includes studying the evolution of the one-mode user
graph to identify topological properties that characterize the system’s normal behavior. Among these
observed properties, those that do not follow the norm of the regular pattern are assumed to indicate the
presence of an anomalous event. Such an event may indicate a potential insider incident or, at least, an
event that requires further investigation [19].

In particular, the user graph allows us to explore the impact of precipitating events in user-system
interactions [20]. Precipitating events are key events that have the potential to trigger insiders to become

1A centralized version control system keeps the history of changes on a central server from which everyone requests the latest
version of the work and pushes the latest changes to, e.g., Concurrent Versions System and IBM Rational ClearCase.
2A precipitating event corresponds to a large-scale event that causes concerning behaviors in employees and predisposed them
to malicious actions. In this category, we include layoffs, significant restructuring, and plant or facility closure. The term was
first used in the insider threat literature in Moore et al. [15].
3A software component is a software module that encapsulates a set of related functions or data, and it is part of a larger software
system. For example, the TCP/IP software component of an operative system. Hereafter, we refer to software components as
simply components.
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a threat to their employer. We hypothesized that precipitating events impact the behavior of interactions
between users and components in the version control system by changing patterns of committing be-
havior. To test this hypothesis, we model and compare the volume of interactions between users over
similar or related components as opposed to non-related components over time. To capture sets of users
with similar patterns of interaction, we rely on the notion of community structure to identify communi-
ties, or clusters, i.e., groups of nodes having higher probability of being connected to each other than to
members of other groups [21]. We show that the volume of interactions between users that contribute
to unrelated components increases when precipitating events are announced. This indicates the impact
of precipitating events in increasing the likelihood of a change in the interacting behavior between users
and components, which might be a signal to monitor before an insider attack is committed.

This is an extended version of a previous study that analyzed the impact of precipitating events in
the committing behavior of employees in a software version control system [1]. In this article we expand
our analysis to include density dependent statistics on the bipartite graphs and illustrate that they do not
provide a useful detection signature that is correlated with the precipitating events. We offer clear links
between the significance of graph properties and the activities of users. We also revisit the results and
conclusions of our previous study.

2 Related Work

The analysis of the insider threat using temporal graph mining is informed by past research in the charac-
terization of insider threats, anomaly detection in temporal graphs, and detection of insider threat using
graph-based approaches. Here, we provide an overview of related works in these three areas.

2.1 Characterization of insider threats

Much of the research on insider threats have been on the characterization of insiders. In general, two
different categorizations have been proposed to classify insiders. The first one focuses on the intention
of the attack [22]. Under this categorization, insiders are classified as (i) malicious, where the insider
intentionally causes a negative impact on the confidentiality, integrity, and availability of the information
system; and (ii) non-malicious (accidental), where an insider, through action or inaction but no malicious
intent, causes harm.

The second categorization is given with respect to the purpose of the attack [7]. With that definition
in mind, two types of attacks are defined more precisely, including (i) a sabotage attack in which the
insider is able to change the value of an artifact used in the computation of a process; and (ii) a data
exfiltration attack in which the insider provides access to artifacts for entities that are not entitled to that
access.

In addition to the previous two-tiered categorization, Nurse et al. proposed a unifying framework to
characterize insiders based on the motivation behind malicious threats and the human factors related to
the unintentional cases [20]. This framework is of particular importance not only because it leverages
previous insider threat case studies, but also due to its analysis of behaviors that may lead to attacks
and the types of attacks that may be executed. The factors that are proposed to this end encompass
precipitating events and the motivation to attack.

2.2 Anomaly event detection in temporal graphs

There are five general approaches for the design of event detection algorithms in temporal graphs [12].
First, compression-based methods represent the graph in a different compact space using methods such
as minimum description length (MDL) [23]. Anomalous events are detected when it is difficult to get a
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compressed representation of the graph. For example, Sun et al. proposed reducing the binary represen-
tation of the adjacency matrix of a graph so as to minimize the cost of encoding [24].

Second, decomposition methods analyze the spectral properties of a matrix representation of a graph
stream by inspecting regular patterns associated to the eigenvalues and eigenvectors. An event is reported
when there is low similarity between the principal eigenvector of the current graph and the aggregated
graph during the previous time frame. The work by Akoglu and Faloutsos applied this idea on a mobile
graph of users when inspecting a correlation matrix between pairs of nodes over a time interval [25].

Third, distance measure methods evaluate distance between graphs as a metric to identify anomalous
events. The distance between consecutive graphs is computed based on changes in a specific structural
property. Consecutive graphs with a significant distance between them should raise an alarm. The work
by Koutra et al. explored this idea by comparing graph adjacency matrices of pairwise node affinities
using a variation of the Euclidean distance [26].

Fourth, statistical methods are based on constructing statistical (parametric or non-parametric) mod-
els (e.g., graph likelihood or the distribution of the eigenvalues) to identify deviations from models.
Anomalous events are identified by calculating the likelihood of appearance of a particular graph object,
e.g., node, edge, subgraph, when a new graph is added to a graph sequence. For example, Aggarwal et al.
proposed a method that quantifies the probability of rare edges appearing between subgraphs, allowing
to pinpoint time intervals where this happens [27].

Finally, community-based methods focused on analyzing the formation of graph community struc-
tures. The idea behind this approach is to report an anomalous event whenever there is a significant
change in any of the communities. The work by Duan et al. computed the similarity between the par-
tition of nodes of incoming graphs and previous graph segments, i.e., a subset of a series of graphs. A
similarity below a certain threshold indicates the occurrence of an anomalous event [28].

The method proposed in this work relies on the notion of graph community structure. For a compre-
hensive discussion about event detection methods in temporal graphs, we refer the reader to the survey
led by Ranshous et al [12].

2.3 Insider threat detection using graph-based approaches

Graph mining techniques have also been used as a tool to understand and identify malicious actions
by insiders. Eberle et al. proposed an approach to detect anomalous subgraphs with respect to the
number of transformations that a subgraph will need in order to be a reference—the normative or best—
subgraph [14]. The approach relies on MDL to quantify the number of required transformations as
a criterion of decision [29]. The authors validated their approach using empirical data on a passport
processing scenario. In particular, they were able to identify some bypassable steps in the process of
getting a passport, which represents an anomalous structure of unseen edges.

To address the dynamic nature of empirical data, in a recent work, Eberle et al. introduced a method
for pattern learning and anomaly detection in streams using parallel processing [30]. This work offers
a considerable improvement on speedup compared to the previous approach by allowing the processing
of dynamic data. The authors validate their approach on empirical data of embassy employee activity in
which the threat was information leakage by employees.

Closer to our work, Kent et al. used the notion of bipartite graphs—by capturing interactions through
authentication logs between users and computers—for assessing network authentication trust risk and
cyber attack mitigation [31]. In particular, they examined the number of connected components (i.e., a
subgraph in which any two nodes are connected to each other by a path) in the bipartite graph to assess
potential risk of credential stealing and compromise within an enterprise network. They found that the
increase in the number of connected components in the bipartite is associated with a reduction in the risk
associated with credential theft and subsequent credential hopping within the network.
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Of similar nature, Chen et al. proposed an unsupervised learning model based on social network
analysis for detecting anomalous access in collaborative information systems [32]. Their approach relied
on the quantification of pairwise similarities of nodes in a graph based on their interactions with particular
subjects when interactions are made between users and subjects in a bipartite graph setting. The authors
validated their results with patient record access data and Wikipedia edit logs.

Note that the previous methods of insider threat detection (using graph mining techniques) were
based on identifying anomalous graph structures (i.e., nodes, edges, subgraphs). The focus of our paper
is on the detection of anomalous events (i.e., time intervals with an unusual pattern of interactions) on
temporal bipartite graphs.

3 Methods

In this section, we detail the mathematical frameworks and data sources that were used to perform the
analysis. We start by describing the temporal framework used to build the graphs (Section 3.1); the
bipartite graph modeling (Section 3.2); the one-mode projection abstraction (Section 3.3); the detection
problem definition (Section 3.4); the algorithm performance abstraction (Section 3.5); the metric of
algorithm performance (Section 3.6); the proposed algorithm (Section 3.7); and the dataset used to arrive
at the results (Section 3.8).

Our method builds graphs of user-system interactions and uses these to identify anomalous patterns.
Anomalies are identified when engineers interact with multiple components where there is no history of
interaction, particularly where none of their team members are interacting or have a history of interaction
with those components. Performance is measured by the ability of the algorithm to detect increases in
anomalous behavior after precipitating events.

3.1 Temporal abstraction

Consider the sequence of n intervals A = {A1,A2, . . . ,An}= {Ak}n
k=1, where

1. Ak = [ak,a′k) for all k < n and An = [an,a′n] for k = n;

2. ak < a′k = ak+1 for all k; and

3. a′k−ak = a′`−a` for all k, `

An interval represents a fixed-length unit of time, e.g., a day of data. Condition (1) implies that all
intervals are left-closed and right-open (except the last one which includes a′n). It guarantees that the
sequence of intervals is disjoint. Condition (2) implies that intervals are non-empty. Note that a′k and
ak+1 represent the time instants of a transition between intervals. For any interval Ak, the right endpoint
a′k corresponds to the left endpoint of the interval Ak+1. Together with Condition (1), Condition (2)
guarantees that the union of all intervals

⋃n
k=1 Ak = [a1,a′n] is a closed interval. Finally, Condition (3)

requires that any two intervals are of equal length.

3.2 Bipartite graph abstraction

A bipartite graph is a graph with two types of nodes. One type of node represents the original nodes (top
nodes), while the other represents the groups with which they interact (bottom nodes) [33].

Let H> be the set of top nodes (e.g., the set of engineers). Similarly, let H⊥ be the set of bottom
nodes (e.g., the set of components). Note that H> and H⊥ are disjoint sets of nodes. Furthermore,
let V (k) ⊆ H> ∪H⊥ be the subset of nodes that interact (i.e., engineers and components) during
interval Ak = [ak,a′k). Let W (k) = {Ωi j(k) : (i, j) ⊆H>×H⊥} be the incidence matrix of weights
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Ωi j(k) that captures the number of interactions between node i and node j during interval Ak. Let G (k) =
(V (k),W (k)) represent a weighted bipartite graph that captures all interactions that occur from endpoints
ak to a′k, k ∈ {1,2, . . . ,n}. Note that we do not differentiate between dynamics within an interval. The
sequence {G (k)}n

k=1 denotes the bipartite graph series G.

3.3 One-mode projection abstraction

Bipartite graphs can be projected to one-mode projection graphs (with nodes of just one type). Let
G>(k) = (H>(k),W>(k)) be the top projection of G (k). Two nodes of H>(k) are connected if they have
at least one neighbor in common in G (k), i.e., W>(k) = {ωuv(k) : u,v⊆H>}, where

ωuv(k) = ∑
|H⊥|
r=1 Ωur(k)+Ωvr(k)

The sequence {G>(k)}n
k=1 denotes the top one-mode projection graph series G>. Correspondingly, the

bottom projection G⊥(k) = (H⊥(k),W⊥(k)) is defined dually as it is illustrated in Figure 1. The sequence
{G⊥(k)}n

k=1 denotes the bottom one-mode projection graph series G⊥. In the rest of this paper, we devote
our study in terms of G> which is the one-mode projection graph of user-system interactions, i.e., the
projection in which nodes are exclusively engineers.

Alice Bob Carol Dave Eve Frank

A B C D

Alice

Bob

Carol Dave

Frank

Eve

A

B

C

D

Figure 1: Bipartite graph abstraction. The top panel represents the engineer projection. The middle panel
represents the original bipartite graph. The bottom panel represents the component projection.

3.4 Detection problem

We use G>, which captures the dynamics across intervals Ak, k ∈ {1,2, . . . ,n}, as the basis for defining
the anomaly event detection problem. In doing so, we evaluate the outcomes of anomaly detection by
measuring structural properties with respect to the cumulative one-mode graph segment of length m∈Z+

defined as

G m
> (k) = (V m

> (k),W m
> (k))

=
k⊕

k′=k−m+1

G>(k′) = G>(k−m+1)⊕·· ·⊕G>(k)
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where

V m
> (k) =

k⋃
k′=k−m+1

V>(k′) and W m
> (k) =

k

∑
k′=k−m+1

W>(k′)

For example, if m = 7, we aggregate data to form weekly graph segments.
Let lm, where l ∈Z+ represents the smallest interval at which we evaluate the outcomes of anomalous

detection (called the detection resolution). Note that if l > 1, then the intervals at which the graph
segments are evaluated are not the same as the ones at which they are formed. The finest detection
granularity satisfies l = 1, i.e., when the detection resolution is the same as the graph segment formation
intervals. A larger value of l reflects that anomalous events are captured by the aggregation of consecutive
graph segments. For instance, if l = 2, then an algorithm for detection aims to determine whether such
an event occurs within intervals (ak−lm+1,a′k] = (ak−2m+1,a′k], k ∈ {2m, . . . ,n}. Let n̄ =

⌊ n
lm

⌋
be the total

number of times the algorithm with resolution lm has to decide whether an event occurs. Let the set
E ⊆ {1,2, . . . , n̄} represent the intervals at which at least one event occurs. The detection problem is
specified as follows.

Given:

(i) A one-mode projection graph series G> = {G>(k)}n
k=1; and

(ii) A detection resolution 1≤ lm < n.

We want to:

(ii) Design a detection algorithm that identifies the subset of intervals Ê ⊆ E in which at least
one anomalous event occurs.

Condition (i) requires that the dataset can be modeled as a series of one-mode projection graphs that
aggregate the interactions occurring during each interval. Condition (ii) assumes that a parameter can be
selected to enable detection of anomalies at a desired timescale.

3.5 Algorithm performance abstraction

Consider a sequence of detection intervals B = {B1,B2, . . . ,Bn̄} = {(a(t−1)lm+1,a′tlm]}n̄
t=1 = {Bt}n̄

t=1. To
measure performance, the output of the detection algorithm Ê is mapped into the sequence of intervals
B. Let ê ∈ Ê be the index of a detection interval that is denoted as anomalous by the detection algorithm
(i.e., the algorithm indicates the occurrence of at least one anomalous event within the interval). The set
Ê can be represented by the indicator vector

Ô =
∨
{1Bt (lmê), ∀t ∈ {1,2, . . . , n̄}} , ∀ê ∈ Ê

where
∨

represents the OR operator and 1Bt (lmê) denotes the indicator function

1Bt (lmê) =
{

1 if lmê ∈ Bt

0 if lmê /∈ Bt

In other words, if 1Bt (lmê) = 1, the algorithm identifies an anomalous event in the detection interval
(a(t−1)lm+1,a′tlm] and labels it as an anomalous interval. The indicator vector Ô describes the interval
indices, i.e., t ∈ {1,2, . . . , n̄} that contain an anomalous event.

Moreover, to characterize the occurrence of actual events during an interval, we define e ∈ E as
the index of a detection interval that is anomalous based on the ground truth. Let the indicator vector
O =

∨
{1Bt (lme), ∀t ∈ {1,2, . . . , n̄}} , ∀e ∈ E represents the intervals that are anomalous based on the
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ground truth, i.e., the distribution of the anomalous events over the set of the n̄ detection intervals.
Figure 2 illustrates the proposed modeling framework. For example, suppose that E = {s, n̄} (represented
by the horizontal arrows) and Ê = {s} (represented by the horizontal crossed arrow). To pinpoint the
detection interval s, there might exist a time index r = ms such that 1Bs(r) = 1. This is represented by
the vertical arrows in Figure 2.

.
.
.

.
.
.

.
.
.

.
.
.

Figure 2: Abstraction of the detection problem. The top panel refers to the sequence of intervals that
are used to build the graphs (here the graph formation interval m = 1). The bottom panel illustrates the
aggregation of intervals to evaluate the performance of the detection algorithm (here detection resolution
lm = 2). The vertical arrows represent the location of an anomalous event in both temporal representa-
tions. The horizontal arrows illustrate the sets E and Ê.

3.6 Algorithm performance measure

The performance of a detection algorithm is measured based on identifying the anomalous detection
intervals. Specifically, the performance of an algorithm is specified based on the set of time intervals
Ê reported as anomalous by the detection algorithm and the set of time intervals E in which anomalies
occur (ground truth).

We compare the performance of the detection algorithms using the true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN) of the detection results. In particular, TP = O · Ô,
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FP = O′ · Ô, FN = O · Ô′, and TN = O′ · Ô′ where the symbol “·” represents the dot product between two
vectors, and O′ and Ô′ represents the complement of O and Ô respectively.

In other words, a detection algorithm specifies the intervals based on a detection criterion. Simi-
larly, to measure performance, it is necessary to know the ground truth anomalous events. The detailed
pseudo-code for the algorithm’s performance measure is presented in Algorithm 1. Next, we introduce
a detection criterion based on the dynamics of the formation of communities and the interaction of engi-
neers across and within them.

Algorithm 1 Algorithm-Performance (Ê, E, n̄)
1: Ô← zeros(n̄)
2: for ê ∈ Ê do
3: Ôê←{}
4: for t ∈ {1,2, . . . , n̄} do
5: Ôê← Ôê ∪1Bt (ê)
6: end for
7: Ô← Ô OR Ôê (element wise)
8: end for
9: O← zeros(n̄)

10: for e ∈ E do
11: Oe←{}
12: for t ∈ {1,2, . . . , n̄} do
13: Oe← Oe ∪1Bt (e)
14: end for
15: O← O OR Oe (element wise)
16: end for
17: O′← NOT (O)
18: Ô′← NOT (Ô)
19: TP← O · Ô
20: FP← O′ · Ô
21: FN← O · Ô′
22: TN← O′ · Ô′
23: return (TP, FP, FN, TN)

3.7 Proposed algorithm

The proposed algorithm aims to define detection signatures based on deviations from the regular pro-
cess of community interaction. To do so, we explore whether variations in the number of edges across
communities (with respect to the total number) are indicators of anomalous events. This is done by
comparing edges in the user graph with respect to a community partition reference over aggregate data.

Let the initial cumulative one-mode graph segment of length m0, 1� m0� n be defined as

G m0
> = (V m0

> ,W m0
> )

=
m0⊕

k′=1

G>(k′) = G>(1)⊕·· ·⊕G>(m0)

where V m0
> =

⋃m0
k′=1 V>(k′) and W m0

> = ∑
m0
k′=1 W>(k′).

The proposed detection algorithm requires the following assumption:

(A1) The initial cumulative graph segment G m0
> can be naturally divided in non-overlapping communi-

ties, i.e., groups of nodes that can be grouped into subsets such that each set of nodes is densely
connected internally and in which nodes belong to a single group [34].

Let the set T = {m0 +m,m0 +2m, . . . , n̄m} captures the time intervals at which the algorithm will be
applied. Note that for k ∈ T , the series {G m

> (k)} forms a set of non-overlapping cumulative graph seg-
ments. The proposed algorithm pinpoints anomalous events by measuring the proportions of inter- and
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intra-community edges of the graph G m
> (k) with respect to the community partition of G m0

> , i.e., we want
to identify the set Ê based on the diversification of community edges. Figure 3 shows a characterization
of that situation.

Alice Bob Carol Dave Eve Frank

A B C D

Alice

Bob

Carol Dave

Frank

Eve

E

Figure 3: Malicious activity in the bipartite graph. The top panel represents an unusual interaction
between Bob and Eve with component “E.” The bottom panel represents the corresponding one mode
projection graph with the anomalous edge crossing communities.

To do so, let C(G m0
> ) = {0,1, . . . ,c} be a set of unique community identifiers where c+ 1 is the

total number of detected communities in the initial cumulative graph segment G m0
> . The community

to which engineer i ∈ V m
> (k)∩V m0

> is assigned (with respect to G m0
> ) is given by ci(k) : i→ C(G m0

> ).
We computed the community partition of the initial cumulative graph segment using the Infomap al-
gorithm [35]. Following similar ideas as in [36], let the set of inter-community edges be Iy(G m

> (k)) =
{(u,v) : ωuv(k)> 0∧(cu(k)∩cv(k)) =∅} and intra-community edges be I�(G m

> (k)) = {(u,v) : ωuv(k)>
0∧ (cu(k)∩ cv(k)) 6=∅}. We also define the inter- and intra-community ratio as

cm
y(k) =

|Iy(G m
> (k)|

|Iy(G m
> (k))|+ |I�(G m

> (k))|
(1)

cm
�(k) =

|I�(G m
> (k)|

|Iy(G m
> (k))|+ |I�(G m

> (k))|
(2)

respectively.
In particular, we are interested in identifying time intervals k, where cm

�(k)−cm
y(k) is below median-

3σ or above median+3σ . The median is used instead of the mean because this measure (over the entire
period of study) cannot be assumed follow a normal distribution since appropriate hypothesis testing
demonstrates that the normal distribution is not a good candidate to model the generation of the empirical
observations. We used the interquartile range to estimate σ as it has been studied by others, e.g., [37].
The detailed pseudo-code for this algorithm is shown in Algorithm 2.

For algorithm performance comparison purposes, we replace the computation of cm
�(k)− cm

y(k) by
the respective graph topological property, e.g., nodes, edges, connected components, average degree,
maximum degree, or maximum weight with respect to G m

> (k).

3.8 Dataset

IBM Rational ClearCase (hereafter ClearCase) is an enterprise-grade software configuration manage-
ment system. Among its main features, it provides version control functionalities to large- and medium-
size organizations allowing them to track software projects with thousands of developers. As of the date

13



Protecting Organizational Assets Through Graph Mining Moriano, Pendleton, Rich, and Camp

Algorithm 2 Event-Detection (G>, m0, m)
1: Compute community partition of G m0

>
2: Y ←{} . Array of intra−inter ratio samples
3: for k in {m0 +m,m0 +2m, . . . , n̄m} do
4: Build G m

> (k) =
⊕k

k′=k−m+1 G>(k′)
5: Compute Iy(G m

> (k))
6: Compute I�(G m

> (k))
7: Calculate cm

y(k) and cm
�(k) using eqs. 1 and 2

8: Y ← Y ∪{cm
�(k)− cm

y(k)}
9: end for

10: median← F̂−1
Y (0.50) . F̂ means the empirical CDF

11: δ ← F̂−1
Y (0.75)− F̂−1

Y (0.25) . The interquartile range
12: Ê←{}
13: for k in {m0 +m,m0 +2m, . . . , n̄m} do
14: if Y (k)<= (median−3σ) or Y (k)>= (median+3σ ) then
15: Ê← Ê ∪{k}
16: end if
17: end for
18: return Ê

of this writing, ClearCase has a market share of about 2.5% among software configuration management
competitors with 55% of their customers in the U.S. [38].

The ClearCase dataset analyzed in this paper comprises the complete activity between engineers and
components in a major computer software enterprise. Components are software packages that encapsu-
late a set of related functions and store metadata allowing version control. In particular, we used data that
spans 22 years from May 4, 1992 to March 23, 2014. We extracted the data from the source code base
management database. Instances with no reference to the engineer or component name were not taken
into account in this analysis. These comprised a negligible percentage of instances, i.e., on the order of
8×10−6. (Thus the number of interactions in this dataset that were not captured in our graph mining
method is sufficiently small that manual examination for insider activity would be quite feasible.)

Using this dataset, we built bipartite graphs to capture the interactions between engineers and com-
ponents. In this bipartite graph, nodes are represented exclusively by engineers and components. Edges
in the bipartite graph represent interactions, i.e., any type of activity that engineers have with compo-
nents, including: commit a file, create a file, delete a file, create a branch, tag a branch, sync a branch,
and collapse a branch. We did not differentiate between these different interactions and treat them as the
same type of edges.

The dataset comprises 10,253 distinct engineers, 1,729 distinct components, and 12,577,667 in-
teractions during the observation period. Remember that our hypothesis is grounded on the idea that
precipitating events might lead to structural changes in the committing behavior of engineers. With that
in mind, Table 1 summarizes the details of the incidents used in this study, i.e., precipitating events that
were announced and validated internally by the enterprise. These events correspond to limited restruc-
turing events and have and effect in all business units of the enterprise.

Table 1: Summary of precipitating events during the observation period.
Event ID Date Jobs % affected

impacted employees
1 2001-04-16 8500 22.4
2 2011-07-18 6500 9.1
3 2012-07-23 1300 1.9
4 2013-03-26 500 0.7
5 2013-08-09 4000 5.3
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4 Results

In this section, we present the results of the analyses on the bipartite graphs and the one-mode projection
(or user graph) of user-system interactions. In the following analysis, our unit of time reference is the
day, i.e., the scale of the variable k. To estimate the length of the window m (the window length that we
use to accumulate interactions among engineers), we relied on the methodology proposed by [39], which
estimated that the size of an observable window for a rigorous characterization of graph properties is at
least one week, i.e., m = 7 days. This means that we build the bipartite and one-mode projection graphs
by aggregating data over non-overlapping windows of 7 days (every week starting on Monday).

We compare the results of the proposed event detector framework to random chance. The purpose of
this comparison is to ensure that the phenomena we identify are not a result of noise or simply the result
of having stochastic data. We then compare our approach with metrics that are based on the volume of
interactions. That is, we test if the proposed approach identifies insider risk more accurately than those
that identify employees by frequency or intensity of access. Sheer counts of access are a core component
of risk-based or accounting-based insider threat approaches. The model proposed here is more accurate
and more precise. The model also offers fewer false negatives (i.e., higher recall).

We used the same visualization conventions for every plot. The blue solid lines show the raw data.
Recall that the raw data corresponds to the empirical measures for each graph topological property.
Dashed black lines represent the dates of the precipitating events listed in Table 1 with their correspond-
ing label in a circle.

The results of these show that the precipitating events cannot be distinguished from other events
using simple graph-based statistics. Our assumption is that although individual events, such as economic
stress, may result in an individual becoming an insider threat, only systematic organizational changes
should be correlated with large-scale increases in insider threat behaviors. Section 4.1 shows the graph-
based statistics from the bipartite graphs. Section 4.2 shows the graph-based statistics for the one-mode
projection graphs. Section 4.3 illustrates the algorithm evaluation using graph-based measurements and
the proposed metric in this paper. In contrast with the results of graph-based measurements, we provide
statistically significant evidence of detection of suspicious interactions after precipitating events have
been announced using the proposed metric. Section 4.4 describes the way in which we obtained the
results of the randomly generated algorithm and the performance comparison of each metric based on
different detection resolutions.

In the following two sections we report basic graph properties. The purpose of this is to illustrate
that naive application of graph mining on bipartite graphs without inclusion of community dynamics is
an inadequate indicator of insider threats.

4.1 Bipartite graph properties series

We report measures related to the number of nodes, edges, connected components, average degree, max-
imum degree, and maximum weight for the bipartite graphs. Formalisms about the framework to build
the bipartite graphs are defined in Section 3.2. The specific properties that we measured from these
graphs are listed here for the reader. Note that edges only capture interactions between engineers and
components. The number of nodes is |V (k)|, which is the total number of engineers and components.
The degree of node i is di(k), i.e., its number of neighbors. The degree of a node is either the number
of components that are touched by a single engineer or the number of engineers that touch a component.
The set of edges of the graph G (k) is E (k) is the total number of unique component/engineer interac-
tions. The number of edges is |E (k)| = ∑i∈V (k) di(k)/2, which means this represents total number of
interactions in the bipartite graph, i.e., system activity. A connected component is a subgraph in which
any two nodes are connected to each other by paths. This means subgraphs can be the result of connec-
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tions or similarities in connections between engineers and/or components so that any two vertices are
connected by any path of interactions. The average degree of graph G (k) is 2× |E (k)|/|V (k)|. This
means the average number of interactions that nodes have reflects the fact that there are two entities in
an interaction. The maximum degree of graph G (k) is the maximum number of neighbors in the graph,
i.e., max{di(k),∀i ∈ V (k)}. This is the maximum number of interactions among the nodes (either with
engineers or components). The maximum weight of a graph G (k) is the maximum weight among the
edges in the graph, i.e., max{ωi j(k),∀i, j ∈ V (k)}. This means the maximum weight value among the
interactions, i.e., the interaction with the higher intensity.

Figure 4 (top) shows the observed number of nodes (i.e., engineers and components) in the bipartite
graphs. Figure 4 (middle) shows the number of unique edges representing the number of interactions
between engineers and/or components. Figure 4 (bottom) shows the number of connected components
in the bipartite graphs. There is a constant increase in the number of nodes since approximately 2002
because there is an increase of both engineers and components. The tendency starts to decrease after
approximately 2010 as other version control systems were adopted. Thus, after 2010, the data are a large
sample rather than a comprehensive dataset. This tendency is also reflected in the number of edges of
the bipartite graphs, which is correlated with the number of nodes [40]. The movement of some core
technologies to a different versioning system is reinforced by the continuous increase in the number of
connected components in the bipartite graph, which indicates a less integrated core of components.

Similarly, Figure 5 shows the time series of average degree, maximum degree, and maximum weight
for the bipartite graphs. Note that under the presence of spikes in the measured signal, they are not
correlated with the vertical lines that indicate the occurrence of the precipitating events. We revisit this
issue in Section 4.2.
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Figure 4: Time series of the number of nodes (top panel), edges (middle panel), and connected compo-
nents (bottom panel) for the bipartite graphs.

4.2 One-mode projection graph properties series

Here, we report results on the same properties as we did for the bipartite graphs, i.e., nodes, edges,
components, average degree, maximum degree, and maximum weight. Formalisms about the framework
to build the graphs are defined in Section 3.3. Note that, in this case, edges occur when two engineers
have interact with the same component (i.e., same code repository) based on the bipartite one-mode
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Figure 5: Time series of the avg. degree (top panel), max. degree (middle panel), and max. weight
(bottom panel) for the bipartite graphs.

projection. The number of nodes is |H>(k)|. This means the total number of engineers in the one-mode
projection graph. The degree of node i is d>i (k), i.e., its number of neighbors. This means the number of
other engineers connected to i. The set of edges of of the graph G>(k) is E>(k). The number of edges
is |E>(k)| = ∑i∈V>(k) d>i (k)/2. This means the total number of interactions in the one-mode projection
graph. A connected component is a subgraph in which any two nodes are connected to each other by
paths. This meas subgraphs made of engineers in which any two vertices are connected, i.e., engineers
that work in related components. The average degree of graph G>(k) is 2×|E>(k)|/|H>(k)|. This means
the average number of activity of engineers in the graph. The maximum degree of graph G>(k) is the
maximum number of neighbors in the graph, i.e., max{di(k),∀i ∈H>(k)}. This means the degree of the
node with more interactions. The maximum weight of a graph G>(k) is the maximum weight of edges
in the graph, i.e., max{ωi j(k),∀i, j ∈H>(k)}. This means the weight of the interaction with maximum
strength.

Figure 6 (top) shows the observed number of nodes (i.e., engineers in the user graph). Figure 6
(middle) shows the number of unique edges representing the number of interactions between engineers.
Figure 6 (bottom) shows the number of connected components in the one-mode projection graphs. In
general, for the number of nodes and edges, there is an increase in these measurements after roughly
2002. The tendency starts to decrease after approximately 2010 when other version control systems
began to be adopted. Thus, after 2010, the data are a large sample rather than a comprehensive dataset.
The movement of some core technologies to a different versioning system is reinforced by the continuous
increase in the number of connected components in the one-mode projection graph, which indicates a
less integrated core of components.

Similarly, Figure 7 shows the time series of average degree, maximum degree, and maximum weight
respectively. Although there are several spikes for these measurements, we present an evaluation of the
proposed algorithm, when these measurements inform the detection signature in Section 4.3.

4.3 Algorithm evaluation

We applied the proposed algorithm for anomaly event detection by leveraging on the structural properties
of the one-mode projection graphs. Note that one-mode projection graphs are derived from the original
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Figure 6: Time series of the number of nodes (top panel), edges (middle panel), and connected compo-
nents (bottom panel) for the one-mode projection graphs.
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Figure 7: Time series of the avg. degree (top panel), max. degree (middle panel), and max. weight
(bottom panel) for the one-mode projection graphs.

user-system interactions or bipartite graphs, so we compare the results of our proposed method with
those properties that are measured in the equivalent one-mode projections. Our criteria for selection
of anomalous time intervals is based on the idea of detecting observations that are far away from the
median (for a specific time interval in which a one-mode projection graph is generated) as we specify in
Algorithm 2. Following similar visualization conventions that we used in Section 4.2, in the following
plots, the black horizontal line represents the median from the empirical observations. Each horizontal
red band represents one standard deviation (the intensity of the bands is proportional to the distance with
respect to the median). Remember that the standard deviation is estimated using the interquartile range
of the distribution of these measurements. We estimated m0, i.e., the length of the initial cumulative
one-mode graph segment, by computing argmaxm0

|C(G m0
> )|. That is achieved by the end of 2002, and it
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is the reason we report the following properties since January 1st, 2003.
Figure 8 shows the time series of nodes, edges, and connected components after the period of char-

acterization of communities, i.e., the period of time comprehended between May 4, 1992 and December
31, 2002. As can be seen, even when there are some fluctuations in these measurements, the majority
of the observations lay up to three standard deviations away from the median. This means that few time
intervals were reported as anomalous during the observation period by relying in these properties.

We also performed similar experiments for the remaining graph-based properties, i.e., average de-
gree, maximum degree, and maximum weight. In particular, Figure 9 summarizes these findings. For
both average degree and maximum degree, the algorithm did not report suspicious time intervals given
that the signal does not exceed ±3 standard deviations from the median. For the signal corresponding to
the maximum weight, various spikes surprise the limits for detection. We report on the performance of
these measurements later in Section 4.4.

Figure 10 shows the behavior for the proposed metric. Details on how this metric is derived are
found in Equations 1 and 2. In particular, there are some spikes that exceed the threshold used by the
algorithm and are close enough to the release of the precipitating events. These spikes suggest a drop in
the number of edges between members of the same communities (conversely an increase in the number
of edges between members of different communities) which, based on our proposal, means a diversified
behavior, i.e., more interaction with different components.
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Figure 8: Time series of the number of nodes (top panel), edges (middle panel), and components for the
one-mode projection graphs (bottom panel).

4.4 Algorithm performance

We compare the performance of the proposed algorithm with the performance of a random algorithm.
In particular, let the output of the random algorithm be R̂ = (R̂1, . . . , R̂n̄)

i.i.d.∼ Bernoulli(0.5). This means
that each time interval is equally likely to be selected as anomalous based on random chance.

Performance for all the proposed algorithms is compared based on accuracy, precision, recall, and
F1 score. These measurements were estimated using the TP, FP, FN, and TN derived from Algorithm 1.

Accuracy is the most basic measure of performance for classification. It quantifies the proportion of
correctly predicted positive and negative instances (i.e., time intervals classified as anomalous or not that
were correctly classified). It is quantified as accuracy = T P+T N

T P+T N+FP+FN .

19



Protecting Organizational Assets Through Graph Mining Moriano, Pendleton, Rich, and Camp

0

50

100

150

Av
g.

 d
eg

re
e

2 3 4 5

0

1000

2000

M
ax

. d
eg

re
e

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Date

0

200

400

600

M
ax

. w
ei

gh
t

Figure 9: Time series of the avg. degree (top panel), max. degree (middle panel), and max. weight
(bottom panel) for the one-mode projection graphs.
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Figure 10: Time series of the intra- minus inter-community edge ratio for the one-mode projection
graphs.

Precision quantifies the proportion of positive predictions that have been correctly classified. This
means that if a considerable number of time intervals are erroneously classified as anomalous, then the
algorithm has low precision. In other words, it is a measure of classification exactness. It is quantified as
precision = T P

T P+FP .
Recall quantifies the proportion of actual anomalous intervals that have been predicted as positive.

This means that if an insignificant number of time intervals are classified as anomalous but they are not,
then the algorithm has low recall. In other words, it is a measure of classification completeness. It is
quantified as recall = T P

T P+FN .
The F1 score conveys the balance between precision on and recall calculated through the harmonic

mean. It is quantified as F1 score = 2 precision×recall
precision+recall .
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Figures 11, 12, 13, 14 show the performance for different detection criteria, i.e., random, nodes,
edges, connected components, average degree, maximum degree, maximum weight and the proposed
approach under different detection resolutions. Performance in the random algorithm is calculated af-
ter 1,000 realizations its evaluation. That means that for the random algorithm, we report on the mean
and standard deviation on such measurements. As we might expect, the performance of the proposed
approach starts increasing when the detection resolution is increased. For the maximum detection reso-
lution that we used, i.e., 26m, the results of the proposed approach outperforms the other measurements
with a F1-score of approximately 85.7%. Noticeably, the performance of the random algorithm is even
higher than those based on graph measurements even when taking into account the effect of the standard
deviations represented by the error lines.

Accuracy of detection methods based on the graph-based properties is high given that the majority
of time intervals are not marked as anomalous based on the small number of precipitating events (which
makes this an unbalanced dataset).
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Figure 11: Algorithm performance for detection resolution 4m.

5 Discussion

The main assumption behind the proposed approach is that insider threat events increase following cer-
tain types of events. Thus, counts of potentially malicious actions correlate with the announcement
of precipitating events. Insider threat events are associated with stress or disgruntlement, and these
responses are often triggered in the wake of precipitating events (e.g., [41, 42, 43, 44, 45]). This abstrac-
tion allows us to test the hypothesis as to whether the diversification of the committing behavior of users
changes after the presence of a precipitating event.

We have proposed a bipartite graph framework that learns regular community behavior based on
the interactions of engineers and components, and analyzes the patterns of connections in and between
communities. We then use this to examine a time period that includes major precipitating events. As
a result, the ground truth available for the analysis implemented here is the rate of insider risk in the
organization after precipitating events. The validation of the model would be clear increases in the
number of interactions across communities after precipitating events, and few increases without these.

Precision and recall together measure how often a threat is correctly identified and how often the non-
malicious is correctly identified, i.e., no false positive or false negatives. This correctness is a significant
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Figure 12: Algorithm performance for detection resolution 8m.
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Figure 13: Algorithm performance for detection resolution 16m.

challenge in detecting insider threats. Individual organizational tolerance for false positives versus false
negatives may differ. Figures 11–14 show that this trade-off can be changed by altering the detection
resolution for the analysis.

Our approach makes a well-grounded assumption about the overall rate of insider threats and ex-
amines aggregate detection after precipitating events. Alternative approaches use artificial data with
anomalies generated based on scenarios and confidential data. Another alternative is using qualitative
research and directly leveraging known cases. By definition, the artificial data and case studies can only
address the insider threats that have been detected using other methods. A third approach examines
private datasets which includes potential malicious insider behavior. Our results use a private dataset
subject and temporal analysis to illustrate that insider behavior increases are correlated with what are
known to be precipitating events.

Of the three methods to address suspicious insider behavior, reproducibility is a particular strength of
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Figure 14: Algorithm performance for detection resolution 26m.

artificial data and is a particular challenge to the third approach (i.e., the one used here). The challenge
to the second (case studies) and third (confidential data) approaches are of reproduction and validation.
To address these challenges, we will release the scripts used to implement this model on or before pub-
lication of the paper. With the publication of our model as implemented, in addition to the description
here, our analysis can be reproduced using any organization’s private data. One goal in publishing this
work is to encourage other researchers to use the model on the data available to them.

One requirement for this approach is adequate data to create the one-mode projection of the inter-
actions between engineers from the bipartite graph of engineers and components. The current dataset
covers more than two decades of interactions with engineers and version control systems. The require-
ments for the minimal training dataset is an open question. With logging provided by version control
systems, software organizations have adequate data. However, other organizations with different types
of data may struggle to find the optimal input. Another question is the optimal size of a community or
subgraph [46]. This is a parameter that will vary between organizations.

One possible weakness to this approach is that an organization with a systematic insider threat prob-
lem may be unable to use this as detection. Training for community detection requires the insider’s
behavior to be anomalous. For example, organizations with high levels of turnover may consistently
see behavior that would be anomalous in another organization, one with has higher retention or a more
careful workforce.

Our approach identifies behaviors as opposed to focusing on the motivation of an individual. As
a result, the particular strength of this method is identification of a significant number of suspicious
behaviors across the entire employee population. A weakness is that an employee who becomes slowly
malicious and increases suspicious behaviors over time may be able to train the model of that organization
not to recognize his behavior as anomalous. This attack would be mitigated by the characterization of
others in organization (who cannot be controlled by the insider). As with all insider threat detection
systems, any employee who has access sufficient to manipulate the input and output of the model itself
can defeat the analysis.

It might also be the case that our assumptions are incorrect. It may be the case also that precipitating
events are not the only triggers to this type of activity. If insider threats are a result or response to specific
events, other specific events including employee dismissal, dispute with employers, perceived injustices,
family problems, coercion, or new opportunities—as has been highlighted in [20]—should be considered
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when evaluating the proposed approach.

6 Conclusions

In this paper, we have revisited the problem of insider threat event detection using graph mining analyt-
ics. To our knowledge, this is the first paper proposing an insider threat detection method using temporal
bipartite graphs to pinpoint malicious events. Our main contribution is the proposal and evaluation of
a generic analytical framework that builds on previous results in analysis of social networks to iden-
tify anomalous behavior by distinguishing access requests within and beyond a given community. We
analyzed access to resources (i.e., code repositories) by employees (i.e., coders and engineers) using a
time series of graph properties to pinpoint time intervals that identify suspicious insider behavior. The
temporal analysis framework can be used with other datasets, including by organizations with no interest
in sharing internal logs.

One major challenge in identification of potentially malicious behavior is determining ground truth.
Although catastrophic insider events are well documented, the regular exfiltration of data by insiders
is less well documented. There is a dearth of data. To address this, we examined the incidences of
suspicious activity and correlated these with events known to be correlated with increases in insider threat
behaviors, specifically precipitating events. The decision criteria for identifying these time intervals is
based on quantifying changes in the way in which employees interact with resources after precipitating
events have been announced. This performance analysis framework can be used by any organization
that has experienced precipitating events in order to test it for applicability to its own risks. Further, by
altering the time period for the analysis, organizations can make their own trade-offs as to the level of
activity that will result in investigation.

From our results, it is possible to see that the proposed framework is able to identify time intervals in
which anomalous activity happens with a reasonable F1 score. We compare the performance of the pro-
posed approach with anomaly detection approaches based on a naive random and edge density dependent
statistics. Our approach outperforms these intuitive approaches giving us insights on the importance of
the diversification of committing behavior on user-system interactions as a possible indicator of insider
threat.

There are three inter-related contributions of this work. The first is the use of temporal graph analysis
to analyze insider threat actions as anomalies. The use of bipartite graphs is also an innovation. The
second contribution is the performance analysis of this method as well as the empirical analysis. The
third contribution is the use of graph decomposition to identify anomalous behaviors using measures of
community structure (in addition to the widely-used volume metric). The final contribution is the manner
in which the analytics leverage organizational theory insights on insiders and precipitating events. A
particular strength of the approach is that all of these methods are reproducible by any organization with
code or data repositories. We detail the technical contributions below.

• Temporal graph analysis framework: We propose a generic temporal graph analysis framework to
model the evolution of bipartite graphs and their equivalent one-mode projection. The proposed frame-
work is based on the idea that the evolution of user-system interactions can be abstracted as a set of
consecutive graphs—also called graph stream (Section 3.2). This framework allows to select the gran-
ularity of network formation which has been found to be application dependent [47]. We use the
proposed framework to formalize a set of measurements of the observed graphs at each time interval.

• Performance evaluation framework: We propose a generic framework to compute the performance
of an event detector algorithm (Section 3.5). We compare the performance of the proposed method
with a naive random and others edge dependent algorithms. (Section 4.4).
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• Graph mining analytics: We use graph mining to reveal that some properties of the one-mode pro-
jection of the bipartite graph significantly change in the presence of precipitating events. To do this,
we leverage more than 22 years of data on user-system interactions in a version control system. In
particular, we show that users tend to diversify their patterns of interactions with components after a
precipitating event is announced (Section 4.2). Our results suggest that this change in user behavior
can be used to infer when anomalous events are happening before widespread disruption. Our work is
differentiated from the work in [17] in three ways. First, we rely on the notion of community structure
to inform the detection process. Second, we integrate the volume of interactions between users in
different communities into the event detection. Finally, we quantify the perturbations inserted in the
system after precipitating events that might lead to insider threats. Methodologically closest to our
work is an analysis of the Enron email corpus and Twitter data in [48]. This work is differentiated not
only by the domain (i.e., version control system) but also in that we abstract interactions as a bipartite
graph and compare our detection results with standard detection approaches.

In summary, we abstract user-system interactions as a modeling framework and apply temporal graph
analysis for identification of insider threat risks. We believe this approach could be widely applicable.

Future work is needed to explore the effect of the length of the initial cumulative graph segment (i.e.,
m0) on the performance of the method for the current dataset.Future work also includes applying the
method to other precipitating events (other than the limited restructuring events analyzed here) inside the
same enterprise, to benchmark the performance of temporal bipartite community graphs against other
event detection methods. We are currently seeking partnerships with other organizations to evaluate this
graph mining approach using correlations with their distinct precipitating events. In addition to detecting
aggregate behaviors during an organizational event, our temporal graph method has the potential to
provide weighted estimates of risk for specific behaviors and specific individuals, both at the moment of
the event and integrated over time. In the long run, our goal is the adoption of this as a mechanism to
detect high-risk behaviors by insiders.
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