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Robustness of community structure under edge addition
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Communities often represent key structural and functional clusters in networks. To preserve such communi-
ties, it is important to understand their robustness under network perturbations. Previous work in community
robustness analysis has focused on studying changes in the community structure as a response of edge rewiring
and node or edge removal. However, the impact of increasing connectivity on the robustness of communities in
networked systems is relatively unexplored. Studying the limits of community robustness under edge addition
is crucial to better understanding the cases in which density expands or false edges erroneously appear. In this
paper, we analyze the effect of edge addition on community robustness in synthetic and empirical temporal
networks. We study two scenarios of edge addition: random and targeted. We use four community detection
algorithms, Infomap, Label Propagation, Leiden, and Louvain, and demonstrate the results in community
similarity metrics. The experiments on synthetic networks show that communities are more robust when the
initial partition is stronger or the edge addition is random, and the experiments on empirical data also indicate
that robustness performance can be affected by the community similarity metric. Overall, our results suggest that
the communities identified by the different types of community detection algorithms exhibit different levels of
robustness, and so the robustness of communities depends strongly on the choice of detection method.
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I. INTRODUCTION

Many complex systems, such as critical infrastructures,
biological networks, and social groups, exhibit network
structures consisting of nodes and edges that capture their
connectivity [1]. Extracting different features from these
networks is useful to better understand their structure and
function [2,3]. Among different properties of networks, many
real networked systems demonstrate community structures, or
clusters, which are groups of nodes that have higher prob-
ability of sharing links with other nodes within the same
group than with nodes in different groups. These commu-
nities typically represent essential functional or behavioral
units in the networks [3–5]. Therefore, it is important to
understand the conditions under which they persist. Com-
munity robustness describes how much network perturbation
a community structure can tolerate while still being able to
recover its original structure [4,6]. The community robust-
ness problem is of practical interest because we want to
understand how well the components in networks can sustain
their basic functionalities when facing errors or attacks [7,
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Chapter 8]. Usually, network perturbations are used to model
either random failures or deliberate attacks in real networked
systems [8].

Studying the robustness of communities in networks
confronts two main challenges. First, although community
structure in networks can provide insights into the orga-
nization of nodes based on their connectivity, there is no
universal definition of community. This makes the detection
of communities itself an ill-posed problem, and hence, in
practice, discovering community structure often depends on
the methods and application [5]. Second, community robust-
ness involves network perturbations, and there are various
ways a network can be modified. Studies so far have fo-
cused on edge rewiring and node or edge removal as the
network perturbation schemes for studying a system’s abil-
ity to sustain basic functionality when some components fail
[6,9–14].

However, real networked systems, such as communica-
tion, citation, or social networks, often increase connectivity
over time, so it is important to consider the scenario of
an increasing number of edges [15]. Added edges can also
simulate errors or attacks [10,16,17]. For example, when sim-
ulating errors, added edges can simulate false-positive edges
(i.e., edges that are present in data erroneously but do not
actually represent the real relations). This is one type of
measurement error commonly found, such as in online com-
munity, communication, and collaboration network data [18].
Similarly, added edges can also simulate deliberate attacks
intended to destroy the established community structure to
quickly disrupt the functionality of the system as in the case
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TABLE I. Synthetic experiment parameters.

Parameter Description Value

N Number of nodes 1000,10 000
maxk Max degree for LFR 0.1N
〈k〉 Average degree for LFR 25
minc Min community size for LFR 50
maxc Max community size for LFR 0.1N
α Degree distribution exponent for LFR −2
β Community size distribution exponent for LFR −1
μ Mixing parameter for LFR 0.01,0.1,0.2,0.3,0.4,0.5
h Times of initial number of edges added up to 10
s Number of steps to add edges 50
r Number of realizations per step 50

of a Distributed Denial of Service attack [19,20]. Therefore,
there is a need to understand the effect of network densifica-
tion on community robustness.

Here we conduct a systematic study to understand the
impact of edge addition on the robustness of communities. We
focus on both the synthetic Lancichinetti-Fortunato-Radicchi
(LFR) benchmark graphs [21] and empirical networks to in-
vestigate the limits of the robustness of the initial community
structure as the network is perturbed through edge addition.
We study two scenarios of edge addition, namely random
and targeted addition. Random addition selects from the set
of all nonexistent edges, and this process is analogous to a
random error in the system [17,18]. Targeted addition selects
only from the nonexistent, cross-community edges, which
we propose to use to simulate attacks. We compute the ef-
fects on community robustness by using Normalized Mutual
Information (NMI) [22], which is a community similarity
measure often used in network community analysis, and by
using element-centric clustering similarity [23] to control for
biases when comparing clusters. We specifically select four
community detection algorithms commonly used in commu-
nity detection benchmarking studies [24,25]: Infomap, Label
Propagation, Leiden, and Louvain. We also demonstrate and
compare community robustness results by using the same
set of community detection algorithms on empirical email
network data, in which the edge density increases over time.

Our results suggest that the chosen clustering algorithm
strongly affects community robustness under edge addition.
Specifically, in both synthetic and empirical networks, we
observe that for different types of community detection algo-
rithms, the similarity measures between communities in the
original and the perturbed networks decay with distinct rates
while more and more edges are being added. Additionally, in
synthetic experiments on LFR benchmark graphs, we observe
that with a smaller mixing parameter, which means that initial
communities are more loosely connected to each other, the
communities tend to be more robust. Synthetic experimental
results also align with the expectation that targeted edge ad-
dition tends to destroy the original community structure more
rapidly compared with random addition, so communities are
less robust with targeted addition. In experiments that use
empirical data, we observe that the choice of community sim-
ilarity metrics, NMI or element-centric clustering similarity in
particular, also affects the results on community robustness.

II. METHODS

A. LFR benchmark

The LFR benchmark graphs [21,26] are commonly used in
network community studies to create graphs with ground-truth
partitions. The advantage of using an LFR benchmark is that
the degree and the community size both follow power-law
distributions, which more closely resemble the properties ob-
served in many real-world networks [2,26–29]. The exponents
of degree distributions are controlled by parameter α, and the
exponents of community size distributions are controlled by
parameter β. We take the typical values of the exponents ob-
served in real networks, i.e., α = −2 and β = −1 [26]. Other
parameters required for generating LFR benchmark graphs
include the average degree 〈k〉, maximum degree maxk, mini-
mum community size minc, maximum community size maxc,
and the mixing parameter μ, which represents the fraction
of nodes that each node shares edges with across different
communities. The lower the μ, the higher the ratio between
the number of internal and external connections. This leads
to higher modularity, which is a quality function commonly
used to express the strength of communities in studies of
communities [4]. Thus, the smaller the μ, the stronger the
partition.

Although we use LFR benchmark graphs for the synthetic
experiments, our method is generally applicable to any type
of benchmark graph that provides ground-truth community
labels, such as the Girvan-Newman benchmark [3] and the
stochastic block model [30]. We generate the LFR benchmark
graphs by using the publicly available implementation [31] of
the algorithm described in Ref. [21]. We conduct experiments
on 1000 nodes and then on 10 000 nodes to study the effect
of perturbations at different scales. We also examine the ef-
fect of the strength of the initial community by varying the

TABLE II. Empirical experiment parameters.

Parameter Description Value

np Number of partitions (fast consensus) 20
s Number of steps 50
r Number of realizations per step 10
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(c) (d)

(a) (b)

FIG. 1. Mean NMI over the percentage of edges added uniformly at random on LFR benchmark graphs with 1000 nodes. Communities
detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain. Average degree is 25. Edges are added up to 10× the original
number over 50 independent steps and are selected without producing multiedges. For each algorithm, we average NMI between the ground-
truth partition and new partitions of the perturbed network over 50 independent runs at each step. The maximum amount of edges we add is
about 25% of all nonexistent edges.

mixing parameter, μ. The specific parameter values used for
generating the LFR benchmark graphs are listed in Table I.

B. Community detection

Community detection is the task of assigning nodes
in a network into clusters based on topological similarity
[4]. Nodes within the same community are more densely
connected compared with the ones across distinct commu-
nities. Various community detection algorithms have been
developed to find clusters in networks. These algorithms are
based on different methodologies to achieve their optimal
clustering solutions. In this work, we use four algorithms

based on three popular methods of community detec-
tion: information-theoretic-based algorithm Infomap [32],
message-passing-based algorithm Label Propagation [33],
and modularity-based algorithms Leiden (partly based on
smart local move algorithm and improved from Louvain)
[34] and Louvain [35]. These chosen algorithms have low-
enough computational complexity [34,36] to accomplish our
experiments in reasonable run time. For Infomap, Label Prop-
agation, and Louvain, we use the publicly available package
[31] implemented by Lancichinetti and Fortunato [37]. The
package for Leiden is publicly available on GitHub [38] and
described in the original paper [34]. We use the undirected
and unweighted implementations for all four algorithms to
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(c) (d)
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FIG. 2. Mean NMI over the percentage of edges added uniformly at random on LFR benchmark graphs with 10 000 nodes. Communities
detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain. Same parameter values are used as with the 1000-node case. The
maximum amount of edges we add is about 2.5% of all nonexistent edges.

ensure consistency with the LFR benchmark graphs we gen-
erate. Rigorous analysis of these four clustering algorithms is
presented in previous work [25].

The community detection algorithm is an essential com-
ponent for studying communities because, although the
benchmark graphs have ground-truth labels of the commu-
nities, few empirical networks have ground-truth partitions.
Moreover, the temporal evolution of the networks makes it
more difficult to obtain ground-truth clustering information at
all times. Notably, although graph embeddings have become
popular for downstream tasks, they have not been devel-
oped thoroughly enough to efficiently achieve good graph
clustering results; their hyperparameter tuning is cumbersome
when attempting good performance [39]. By comparison, tra-
ditional community detection algorithms require no parameter
tuning but can provide relatively good clustering results in

a reasonable run time. For these reasons, we use the four
well-developed community detection algorithms for our ex-
periments.

C. Community similarity

To measure similarity between communities, we use NMI
[22] and element-centric clustering similarity [23] as the met-
rics. Without loss of generality, suppose that C1 and C2 are
partitions on the same set of N nodes. The NMI score of the
two partitions is defined as

NMI(C1,C2)

=
−2

∑|C1|
i=1

∑|C2|
j=1 P (i, j) log

[
P (i, j)

P1(i)P2( j)

]

∑|C1|
i=1 P1(i) logP1(i) + ∑|C2|

j=1 P2( j) logP2( j)
, (1)
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(c) (d)

(a) (b)

FIG. 3. Mean NMI over the percentage of edges added that are selected uniformly at random across different communities on LFR
benchmark graphs with 1000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain. Same
parameter values are used as in previous experiments. The maximum numbers of edges we add are between 26% and 28% of all nonexistent
cross-community edges for all μ.

where P1(i) = |C1 i|
N , P2( j) = |C2 j |

N , and P (i, j) = |C1 i∩C2 j |
N for

C1i ∈ C1, C2 j ∈ C2 as the clusters of partition C1 and C2,
respectively. We use the scikit-learn implementation of NMI
[40] in our experiments.

In addition to NMI, we also compute the similarity
between communities by using element-centric clustering
similarity, which better copes with issues such as bias
in randomized membership, bias in skewed cluster sizes,
and the problem of matching [23]. Although NMI tends
to favor more clusters, element-centric clustering similarity
overcomes such bias in the number of clusters. We report
the experimental results computed in this metric using the
CluSim package [41] along with the default parameter. Both
NMI and element-centric clustering similarity range from 0

to 1, where a higher value means more similarity between
partitions.

D. Experimental procedure

We experiment on several computer-generated networks
and empirical temporal networks to examine the robustness
of their community structures. The empirical networks are
real-world data, and we have no control over their intrinsic
network properties. The ground-truth communities and the
interpretability of the clusterings found by detection algo-
rithms on these data are often unclear [42], so in the studies
on clusterings in networks, synthetic networks often serve
as handy examples for tests. Here we illustrate the details

054302-5



MOYI TIAN AND PABLO MORIANO PHYSICAL REVIEW E 108, 054302 (2023)

(c) (d)

(a) (b)

FIG. 4. Mean NMI over the percentage of edges added that are selected uniformly at random across different communities on LFR
benchmark graphs with 10 000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain. Same
parameter values are used as in previous experiments. The maximum numbers of edges we add are in the range from 2.4% and 2.7% of all
nonexistent cross-community edges for all μ.

of the experimental procedures for synthetic and empirical
networks. The tests on synthetic and empirical networks are
designed differently because the synthetic network is station-
ary without natural perturbations, whereas the empirical data
does not have ground-truth community labels and requires
further cleaning to work as comparable examples [43].

1. Experiments on synthetic networks

Suppose the initial network is G = (V, E ), where V =
{1, 2, . . . , N} is the set of N nodes, and E = {ei j : i, j ∈ V }
is the set of M edges. Let Ec be the set of edges in the
complement graph of G. The benchmark graph provides each
node a community label denoted by ci for i ∈ V . The graph
partition is then C = ⋃

k∈⋃
i∈V {ci} {⋃ j∈V { j : c j = k}}. We also

define a set for nonexistent edges across different communi-
ties denoted by Ec

inter = {ei j ∈ Ec : ci �= c j, i, j ∈ V }. To start,
we choose a community detection algorithm and specify pa-
rameters h, s, and r ∈ Z+, where h is how many times the
initial number of edges is added up, s is the number of steps
to add edges, and r is the number of realizations per step.
The parameters we use for the synthetic experiments are listed
in Table I.

We illustrate the effects of edge addition on community
structures through two different network perturbations: ran-
dom addition and targeted addition. Let t ∈ {0, 1, 2, . . . , s}.
For the random addition approach, we select Eν ⊆ Ec uni-
formly at random. For targeted addition, we choose Eν ⊆
Ec

inter uniformly at random, where |Eν | = � hM
s 	t . Notably, the

random addition is analogous to the case in which random
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FIG. 5. Mean NMI over the percentage of edges added for the
ia-radoslaw-email subnetwork with 74 nodes. We use fast consensus
to obtain 20 initial community partitions. Edges are added over 50
steps following time stamps from the dataset. The average NMI is
computed over all pairs of the initial consensus partitions and the
partitions from 10 independent realizations at each time step.

errors or random additional connections appear. Conversely,
targeted addition simulates the case in which much of the
information about the community structure is known, and
there is an intention to break the current partitions through
increasing connectivity. In each of these edge-addition con-
figurations, we create a new graph, G′ = (V, E ′), such that
E ′ = E ∪ Eν .

We then apply the specific community detection algorithm
on G′ to yield an associated graph partition, C′. We repeat the
previous steps for r-independent times at each t : specifically

FIG. 6. Mean NMI over the percentage of edges added for the
Enron subnetwork with 120 nodes.

FIG. 7. Mean NMI over the percentage of edges added for the
email-Eu-core-temporal subnetwork with 282 nodes.

r realizations at every single step t over the total s steps.
Suppose the chosen community similarity metric is S . We
then calculate the metric score Sk (C,C′

k ) for each realization,
k, where C′

k is the associated graph partition, and report the
average Savg = 1

r

∑r
k=1 Sk (C,C′

k ).

2. Experiments on empirical temporal networks

Temporal email networks are natural candidates for em-
pirical experiments and are comparable to the synthetic
experiments. The email conversations between users in these
networks naturally emerge at their sent time, which can be
directly considered as additional edges over time steps.

Unlike the benchmark graphs, empirical networks do not
have ground-truth community labels, so we must first identify

FIG. 8. Mean element-centric clustering similarity over the per-
centage of edges added for the ia-radoslaw-email subnetwork.
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FIG. 9. Mean element-centric clustering similarity over the per-
centage of edges added for the Enron subnetwork.

a reliable community partition on the initial graph before
the start of network perturbation. In doing so, we apply the
fast consensus algorithm [44], which is based on the idea
of consensus clustering [37]. Because established commu-
nity detection algorithms produce nondeterministic partitions,
consensus clustering was proposed for more stable and accu-
rate results after iterations among multiple clustering results
given a prespecified clustering method. There are two pa-
rameters we must specify as inputs for the fast consensus
algorithm: the number of partitions, np, and the clustering
method. The default value for np in the fast consensus algo-
rithm is set to be 20, which is also the value used for tests
demonstrated in the original paper [44]. We also found that
np = 20 balances performance and run time. This choice of
the value is specified in Table II. For the clustering method,

FIG. 10. Mean element-centric clustering similarity over the per-
centage of edges added for the email-Eu-core-temporal subnetwork.

we choose it to be consistent with the one used for community
detection in the later perturbed networks.

In addition, there are other issues that must be addressed
before testing on email networks with time stamps associated
with edge emergence.

First, the problem is finding appropriate empirical network
examples on which we can perform experiments compara-
ble to the synthetic case. Specifically, the empirical network
should have a temporally growing number of edges on a
fixed set of nodes, and the growth within the recorded time
frame should be on the comparable scale as the synthetic
experiment, where we add edges up to 10×. The problem is
that temporal email networks always expand in the number of
edges and in the number of nodes. If we look at the graph on
the set of all users who appear within the given time frame,
then we usually find that only a tiny fraction of edges, or
sometimes none, are added until the end of the recorded time.
This is because there are always new users joining the net-
works, occasionally even at the very end. For some networks,
there is also a co-occurring issue that many users are not very
active and do not contribute many new communications (i.e.,
edges) over time. This is why, rather than using the entire net-
work datasets as obtained, we instead first identify appropriate
subnetworks extracted from the original email data and then
use them as examples for our empirical experiments. There
are different ways to select subnetworks from the original
ones. When the entire network is small enough, choosing
subnetworks based on an exhaustive search may be possible.
However, due to the size of our original empirical datasets,
checking all possible combinations of nodes and the growth
in density of their induced subnetworks will be computation-
ally expensive. Therefore, our approach is to search over a
family of subnetworks induced by the first n nodes showing
up in time with n swept from 1 to N where N is the total
number of users present in the full dataset. We then look
at the growth in density for each of these subnetworks and
select an appropriate one as the example to use. More details
of our subnetwork selection and the corresponding network
properties are described in Sec. III B.

Second, email networks usually have multiedges emerging
in time because several emails can be sent between the same
pair of users, but the synthetic networks we test on have no
multiedges. Here we align our empirical experiment with the
synthetic case by preprocessing the network data so that there
are no repeating edges. We do so by removing the edges
that arrived later and already showed up once at a previous
time from the edge list. In this way, we consider an edge
to represent an existing relationship between users, thereby
omitting the number of conversations that occurred.

Third, we must also identify which network should be
treated as the initial network. The empirical networks always
start with zero edges, but it is not meaningful to use the null
graph because then no communities will ever exist at the
initial time. Also, the community detection algorithms take in
only the edge lists and so only the nodes incident to the edges
present in the list are assigned with community labels. So, to
use the algorithms, we must ensure all nodes appear in the
edge lists. Therefore, in our empirical experiment, we choose
the initial network by picking the first one without any isolated
nodes when growing the network in time. This is achieved
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(c) (d)

(a) (b)

FIG. 11. Mean element-centric clustering similarity over the percentage of edges added uniformly at random on LFR benchmark graphs
with 1000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.

by adding edges one at a time according to their associated
time stamp and checking at which time every node is at least
incident to one edge.

In our empirical experiments, we use np for fast consensus,
and we also have parameters s and r. Here s refers to the
number of steps with respect to time, and r is the number of
realizations per step. Table II lists the parameter values for the
empirical experiments.

As previously mentioned, we preprocess and identify suit-
able empirical networks for our experiment. The experimental
procedure is as follows. Suppose that we have a precleaned
empirical network dataset (without multiedge) with V =
{1, 2, . . . , N} to be the set of nodes and M to be the num-
ber of edges. Recall that edges appear in time one by one,
so there are M associated time stamps. At time stamp i ∈
{1, 2, . . . , M}, we denote the emergent edge pointing from

node vs(i) to node vt (i) by evs (i),vt (i), where vs(i), vt (i) ∈ V .
Using these notations, the dataset can be presented as an
edge list {evs (1),vt (1), evs (2),vt (2), . . . , evs (i),vt (i), . . . , evs (M ),vt (M )}.
Then we grow the network until the time stamp t0 =
min {ts :

⋃
1�i�ts

{vs(i), vt (i)} = V, 1 � ts � M}, which is the
first time when there are no isolated nodes. The initial net-
work is chosen to be G0 = (V, E0), where E0 = {evs (i),vt (i) :
1 � i � t0}. Before each experiment, we specify a clustering
method and parameters, np, s, r ∈ Z+ (s is upper bounded by
M − t0, and our preprocessing should provide an appropriate
dataset that M � t0). We first apply fast consensus on G0

using np as the hyperparameter for the number of partitions
and the chosen method for the clustering algorithm. The con-
sensus algorithm yields np initial partitions C0,w for 1 � w �
np. Then we simulate on the evolved networks over time.
Specifically, for 1 � p � s, let tp = t0 + �M−t0

s 	p. The new
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(c) (d)

(a) (b)

FIG. 12. Mean element-centric clustering similarity over the percentage of edges added uniformly at random on LFR benchmark graphs
with 10 000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.

graph Gp = (V, Ep) at time step p is constructed such
that Ep = {evs (i),vt (i) : 1 � i � tp}. Use the chosen cluster-
ing method to find partitions of Gp for r times inde-
pendently and denote the corresponding clustering results
as Cp,q for 1 � q � r. For each 1 � p � s, we report
the average community similarity metric score: Savg,p =

1
np·r

∑np
w=1

∑r
q=1 S (C0,w,Cp,q ).

III. RESULTS AND DISCUSSION

This section describes the computational results from the
synthetic experiments on LFR benchmark graphs and the em-
pirical experiments on subnetworks obtained from temporal
email networks.

Note that while more edges are added to the initial net-
work, it is likely that the community structure evolves over
perturbation. However, our focus is not on tracking changes in

the community structure itself but on understanding the limits
of the robustness of the initial community structure under
edge-addition perturbation.

A. Synthetic networks

We test on LFR benchmark graphs with 1000 and 10 000
nodes and report the results calculated with the NMI met-
ric. The results for the same series of experiments using the
element-centric clustering similarity metric are presented in
Appendix A. We also include the associated plots of standard
deviation for all synthetic experiments in Appendix C.

Figures 1 and 2 show how the four different community
detection algorithms—Infomap, Label Propagation, Leiden,
and Louvain—perform when the LFR benchmarks with 1000
and 10 000 nodes are perturbed under uniformly random
edge addition. Recall that in this setting, the edges added
at each step are selected uniformly at random from all the
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(c) (d)

(a) (b)

FIG. 13. Mean element-centric clustering similarity over the percentage of edges added that are selected uniformly at random across
different communities on LFR benchmark graphs with 1000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden,
and (d) Louvain.

nonexistent edges in the initial network, while multiedges are
prohibited. This is analogous to random errors in real-world
networks.

LFR benchmark graphs with lower μ values (i.e., stronger
initial partitions) have higher NMI values compared with the
ones with higher μ after 10× the original number of edges
are added. Note that adding edges is essentially a process
of balancing the fraction of intercommunity edges with that
of intracommunity edges. Hence, this observation aligns with
our intuition because when a community partition is stronger,
it requires more edges to be added until the established
community structure becomes less clear, meaning that the
community structure is more robust.

The modularity-based algorithms, Louvain and Leiden,
have relatively higher NMI scores vs Infomap and Label
Propagation. For example, if we look at the μ = 0.3 curves

in Fig. 1, then Louvain and Leiden need about 6.3× the orig-
inal number of edges to be added until the similarity scores
drop 50%, whereas Infomap and Label Propagation only need
about 1.1× and 0.9×, respectively. This indicates that Lou-
vain and Leiden are better at detecting community structures
that are similar to those initial ones in the LFR benchmark
graphs after a large number of edges is added. The exact
reasons are unclear, but a plausible explanation is that the
algorithms have different behaviors due to their assumptions
and methodologies when performed on graphs with different
intrinsic network properties. Specifically, we observe that our
method of appending edges shifts the degree distribution from
the initial power-law distribution to a distribution closer to the
binomial.

In our experiments, Infomap and Label Propagation end
up only finding one giant community for the entire network
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(c) (d)

(a) (b)

FIG. 14. Mean element-centric clustering similarity over the percentage of edges added that are selected uniformly at random across
different communities on LFR benchmark graphs with 10 000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden,
and (d) Louvain.

after about 1× or 2× the original number of edges are added.
According to the original Infomap paper [32], this flow-based
method excels at identifying movement patterns, whereas the
modularity-based method is better at detecting structure in
networks with pairwise relations but not many flows. The
rapid drop in NMI for Infomap could result from our per-
turbation methods focusing on adding connections between
nodes because this focus more directly alters the topological
structure of the graph rather than representing any flow of
patterns. For Label Propagation [33], the authors explicitly
state that their method only detects a single community for the
giant connected component in those homogeneous networks
without community structures, such as the Erdős-Rényi
model. A reason for the rapid drop in NMI for Label Prop-
agation could be that as we fix the number of nodes and
keep adding edges selected uniformly at random among the

nonexistent edges (with restriction to the cross-community
ones for the targeted case), the perturbed graph gradually
becomes more and more homogeneous, which gets closer to
the structure of an Erdős-Rényi random graph while growing
in its density.

Figures 3 and 4 demonstrate the results on LFR bench-
mark graphs under targeted edge addition for 1000 nodes and
10 000 nodes, respectively, which means that we restrict the
new edges to be across distinct communities in the initial
networks. Because the appended edges are forced to con-
nect different communities, the targeted addition should be
able to destroy the original community structure quicker than
random addition, which is similar to the purpose of attacks
on real networks. As expected, the targeted edge addition has
relatively lower NMI values for all four algorithms vs the
previous results with random edge addition. For example, if
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(c) (d)

(a) (b)

FIG. 15. Mean NMI over the percentage of edges added on LFR benchmark graphs with 1000 nodes. The ratio of intercommunity edges
added is 94%, which matches the one in the ia-radoslaw-email subnetwork. Communities detected by (a) Infomap, (b) Label Propagation,
(c) Leiden, and (d) Louvain.

we again look at the μ = 0.3 curves with 1000 nodes in Fig. 3
but for targeted addition, Louvain and Leiden need to add
about 2.7× (vs 6.3× for random addition), whereas Infomap
and Label Propagation need to add about 0.9× and 0.7× (vs
1.1× and 0.9× for random addition) the original number of
edges, respectively, to drop the similarity scores below 0.5. In
targeted addition, we also observe that networks with stronger
initial community structures tend to be more robust, and this
is the same trend we see in random addition. Moreover, we
again observe that Louvain and Leiden are better at detecting
clusters similar to the originals.

Notably, in experiments with larger networks, specifically
in Fig. 2, the curves for μ = 0.01 and μ = 0.1 with Louvain
and Leiden cross each other when about 4× of the original
number of edges is added. Also, in Fig. 4, the curves with
Louvain and Leiden for μ = 0.01 and μ = 0.1 are almost

superimposed on each other. Recall that, as we previously
discuss in Sec. II C, there are limitations with the NMI
metric. For this reason, we also compute results with the
element-centric clustering similarity, for which there is a clear
separation between curves. We show these results in Figs. 12
and 14.

B. Empirical networks

For the empirical experiments, we use three empirical
email networks with time stamps provided for all edges and
test on their subnetworks. The specific procedure for these
experiments is described in Sec. II D 2. The first network
is the ia-radoslaw-email network [45]. The entire dataset is
email network activity over the course of 6 months among
167 employee email addresses at a mid-sized manufacturing
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(c) (d)

(a) (b)

FIG. 16. Mean element-centric clustering similarity over the percentage of edges added on LFR benchmark graphs with 1000 nodes. The
ratio of intercommunity edges added is 94%. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.

company. The second network is the Enron network as part of
the Koblenz Network Collection [46]. The original network
consists of more than 80 000 users and 1 million emails be-
tween Enron employees from 1999 to 2003. The last network
is the email-Eu-core-temporal network [47] generated from
email data among 986 members of a large European research
institution between 2003 and 2005.

To select appropriate subnetworks, we look at all subnet-
works induced by subsets of nodes {1, 2, . . . , n} for every
1 � n � N in the entire graph G = (V, E ), where |V | = N ,
and the nodes’ ids are assigned according to their first ap-
pearance in time. We then extract the subnetwork that has a
significant increase in density in time, so the demonstration
can be comparable to the synthetic results for how many
multiples of edges are added by the end. The number of
nodes represented in the following network examples refers
to the subnetworks on the email users who show up first in

time. Specifically, the ia-radoslaw-email subnetwork has the
first 74 nodes in time with their corresponding 1457 edges,
the Enron subnetwork is obtained by first trimming down
to a 1999–2002 time frame and then selecting the first 120
nodes in time with their associated 1603 edges, and the email-
Eu-core-temporal subnetwork is the first 282 nodes with
4544 edges.

Figures 5–7 show the mean NMI over the percentage of
added edges in the subnetworks of the ia-radoslaw-email, En-
ron, and email-Eu-core-temporal networks, respectively. The
corresponding results for standard deviation are included in
Figs. 25–27 in Appendix D.

Notably, empirical networks are more complex to ana-
lyze because they lack ground-truth community structure, the
degree distribution might not belong to a certain family of
distributions, and the set of edges added in time may be
governed by different unknown factors that we cannot control.
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(c) (d)

(a) (b)

FIG. 17. Standard deviation of NMI over the percentage of edges added uniformly at random on LFR benchmark graphs with 1000 nodes.
Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.

In considering the effect of edge-addition rules in the em-
pirical compared with the synthetic cases, we look at the ratio
of intercommunity edges among all added edges over time
for each empirical network. For ia-radoslaw-email, Enron, and
email-Eu-core-temporal subnetworks, the intercommunity ra-
tios are 94%, 90%, and 59%, respectively. Note that the LFR
benchmark graphs are sparse and so there is a lower fraction
of intracommunity edges available to be added. Specifically,
for the LFR benchmark on 1000 nodes, the number of intra-
community nonexistent edges is only about twice the original
number of edges but the number of intercommunity nonex-
istent edges can go to about 37×. This means that for our
random addition on LFR benchmark with 1000 nodes, the
fraction of intercommunity edges added is around 95%, and
due to the limited number of intracommunity edges, it is
impossible to have intracommunity edges taken more than

20% of the 10× additional edges. The ia-radoslaw-email sub-
network has the ratio of added intercommunity edges most
comparable with our previous synthetic experiments on 1000
nodes. To draw a direct comparison between the empirical
and the synthetic cases, we experiment on synthetic networks
where the ratio of added intercommunity edges is controlled to
match the one in ia-radoslaw-email subnetwork, namely 94%.
The results show similar behaviors as the previous synthetic
ones and we include them in Appendix B.

In addition, we acknowledge that the chosen subnetworks
described here are not as large as the synthetic benchmark
graphs: The benchmark graphs have thousands of nodes,
whereas the empirical network examples only have hundreds.

Among these results in NMI, the experiments on the
ia-radoslaw-email and Enron subnetworks reveal similar be-
haviors as the synthetic networks (i.e., Leiden and Louvain
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FIG. 18. Standard deviation of NMI over the percentage of edges added uniformly at random on LFR benchmark graphs with 10 000
nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.

appear to detect more sustainable community structure than
Infomap or Label Propagation as more edges are added).
However, in the experiments on the email-Eu-core-temporal
subnetwork, Infomap has performance similar to Leiden and
Louvain, whereas Label Propagation has the lowest NMI
score almost throughout all time steps. Although there may be
intertwining reasons for these results, one shared phenomenon
we observe for all subnetworks is that with Infomap or Label
Propagation, the mean NMI drops to almost 0, whenever the
detection algorithm begins to detect only one community in
the perturbed networks.

While community detection algorithms have different
performance, we also observe effects from using different
community similarity metrics. Specifically, we repeat the
same sets of experiments but replace the NMI metric with
the element-centric clustering similarity. Figures 8–10 illus-
trate these results. The corresponding standard deviations are

provided in Figs. 28–30 in Appendix D. Using this different
metric, we find that Infomap, Leiden, and Louvain do not
show consistent advantages over each other, but Label Prop-
agation, although not necessarily dropping to 0 by the end of
time, always has the lowest metric value.

One noticeable difference in these element-centric cluster-
ing similarity results from the NMI results is the curve for
Infomap in the Enron subnetwork. In the NMI plot (Fig. 6),
the value eventually drops to 0, which shows that the com-
munity structure detected by Infomap is not as robust as
that by Leiden or Louvain in terms of NMI. However, in
the element-centric clustering similarity metric, the cluster-
ing similarity value is the highest for Infomap throughout
time among the four algorithms, and this suggests that the
community structure found by Infomap is the most robust
in our experiments according to this alternative metric. To
determine what is happening, we look at the mean number of
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(c) (d)
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FIG. 19. Standard deviation of NMI over the percentage of edges added that are selected uniformly at random across different communities
on LFR benchmark graphs with 1000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.

communities detected by the four algorithms at each step and
find that it drops from higher numbers to 1 for both Infomap
and Label Propagation but maintains around 5 or 6 for Leiden
and Louvain by the end of time. Note that the NMI always
outputs 0 whenever one of the two partitions being compared
has only one community due to the formulation of this metric,
so we suspect that this property might have hindered NMI
from capturing some similarities between the communities in
the initial and the highly perturbed networks, especially after
the number of detected communities drops to 1.

Nonetheless, when networks are perturbed under edge ad-
dition, and the density is increased by a significant amount,
different community detection algorithms start to show clear
discrepancies in whether they can find a community structure
similar to the initial one. Hence, the chosen community de-
tection algorithm plays an important role in detecting robust
community structures over time.

IV. CONCLUSION

We design synthetic and empirical experiments to test the
robustness of community structure under the perturbation of
edge addition by using different community detection algo-
rithms. Overall, we found that community robustness strongly
depends on the community detection algorithm selected. In
the synthetic experiments, we use LFR benchmark graphs
and control the mixing parameter, μ. To mimic how edges
may be added in different scenarios in real networks and to
illustrate the difference in the outputs, we add random edges
in two different ways. Both ways select additional edges from
nonexistent edges. One is a completely uniformly random se-
lection, which is analogous to random errors, and the other is
a targeted selection from edges across different communities,
which is analogous to attacks in real-world networks.

We demonstrate results for six different mixing parameter
values and the two different edge-addition methods described
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(c) (d)

(a) (b)

FIG. 20. Standard deviation of NMI over the percentage of edges added that are selected uniformly at random across different communities
on LFR benchmark graphs with 10 000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.

above. The clustering similarity scores computed in NMI indi-
cate that networks with lower mixing parameters (i.e. stronger
partitions) have more robust community structures under the
perturbation of edge addition. Our targeted edge-addition
method can more efficiently alter the initial communities com-
pared with the random addition. As expected, the NMI values
drop faster in the targeted case among all chosen community
detection algorithms.

In these synthetic experiments, modularity-based algo-
rithms, Leiden and Louvain, show better performance in
detecting more similar communities to the initial ones vs
Infomap and Label Propagation, which cannot detect any
community structure when graphs become too dense. In other
words, Leiden and Louvain excel at finding more robust com-
munities in networks that can withstand more severe network
perturbations. We also observe effects caused by community

similarity metrics, NMI and element-centric clustering sim-
ilarity specifically, but the takeaways in the two metrics are
not significantly different in the qualitative sense. The over-
all impacts of the initial partition strength, the edge-addition
method, and the selected community detection algorithm are
similar with either metric.

We acknowledge that empirical temporal networks in-
troduce more complexity, and we see different community
similarity metrics demonstrate significantly different results
when determining whether the detected communities are sim-
ilar to the initial ones (i.e., whether the community detection
algorithm can find a robust community structure). In the
empirical experiments, we again find that community detec-
tion algorithms play an important role in the robustness of
communities. Specifically, for all three empirical subnetworks
tested, we observe that Label Propagation performs the worst
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(c) (d)
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FIG. 21. Standard deviation of element-centric clustering similarity over the percentage of edges added uniformly at random on LFR
benchmark graphs with 1000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.

among the four algorithms in detecting robust communities
over time using either NMI or element-centric clustering
similarity.

When considering future research directions, we note
that the different metrics and community detection algo-
rithms show different outcomes on the empirical temporal
networks. To understand more about their effects on the
community robustness performance, we need many more net-
work examples in which edge densities expand over time.
Adequate network candidates with properties in different
families—including scales, densities, degree distributions,
and edge-addition rules—are needed for comparison tests in
order to distinguish the effects from each individual aspect.
Another direction for future research is to explore different
types of generative models for benchmarking and include
community detection algorithms based on other methods for
comparison.

The code for reproducing our experiments can be found on
GitHub [43].
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FIG. 22. Standard deviation of element-centric clustering similarity over the percentage of edges added uniformly at random on LFR
benchmark graphs with 10 000 nodes. Communities detected by (a) Infomap, (b) Label Propagation, (c) Leiden, and (d) Louvain.
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APPENDIX A: SYNTHETIC RESULTS USING
ELEMENT-CENTRIC CLUSTERING

SIMILARITY METRIC

Figures 11 and 12 show the results of using the element-
centric clustering similarity metric for the LFR benchmark
graphs with 1000 nodes and 10 000 nodes, respectively, with

added edges selected uniformly at random from all nonex-
istent edges while multiedges are prohibited. Notably, the
parameter values are chosen the same as in experiments that
use NMI, and the experimental procedure follows Sec. II D 1.
Figures 13 and 14 show the LFR benchmark graphs with 1000
nodes and 10 000 nodes, respectively, with additional edges
selected uniformly at random but restricted to ones that cross
different communities.

Results in element-centric clustering similarity agree with
the observations from results in NMI. Networks with stronger
initial partitions, specifically those with lower μ values,
are relatively more robust in the community structure. Tar-
geted edge addition can more quickly destroy the original
community structure. Also, community robustness is highly
dependent on the chosen community detection algorithms.
In particular, Leiden and Louvain can detect communities
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FIG. 23. Standard deviation of element-centric clustering similarity over the percentage of edges added that are selected uniformly
at random across different communities on LFR benchmark graphs with 1000 nodes. Communities detected by (a) Infomap, (b) Label
Propagation, (c) Leiden, and (d) Louvain.

similar to the initial ground truth as the graphs increase the
number of edges significantly.

APPENDIX B: SYNTHETIC RESULTS MATCHING RATIO
OF INTERCOMMUNITY EDGES IN EMPIRICAL

EXPERIMENTS

Figures 15 and 16 show mean community similarity
metrics, NMI and element-centric clustering similarity re-
spectively, over percentage of edges added on LFR benchmark
graphs with 1000 nodes. Here, at each step, we force 94%
of the added edges to be randomly selected from the pool
of intercommunity nonexistent edges. This ratio matches the
proportion we found for the intercommunity edges added of
the total additional edges in the ia-radoslaw-email subnet-
work. Specifically, since we have four community detection

methods and each of them has np = 20 initial communi-
ties found by the fast consensus algorithm, we have 80
corresponding ratios and then we take the mean as the
estimate.

These results show similar behaviors as those observed in
the synthetic experiments: A lower mixing parameter, μ, tends
to have a more robust community structure, and among the
four community detection algorithms, Leiden and Louvain
can detect communities more similar to the initial ground
truth.

APPENDIX C: STANDARD DEVIATION FOR
SYNTHETIC RESULTS

Figures 17–24 show the standard deviation of NMI and
element-centric clustering similarity metric for the syn-
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FIG. 24. Standard deviation of element-centric clustering similarity over the percentage of edges added that are selected uniformly
at random across different communities on LFR benchmark graphs with 10 000 nodes. Communities detected by (a) Infomap, (b) Label
Propagation, (c) Leiden, and (d) Louvain.

thetic results. Note that the overall changes in the standard
deviation are generally restricted to a region with negligible
scale compared with the mean. However, the only exception is
for Infomap (a) and Label Propagation (b) where we observe
a spike for almost every curve within the region when less
than 2× the original number of edges are added. Further in-
vestigation of the mean and the distributions reveals that these
locations with large standard deviations correspond to the
steps where the rapid drops in the means happen. Specifically,
values of the community similarity metric at these steps are
split into two families with comparable size—one with 0s and
the other with values very close to 1. Recall that at each step,

there are 50 independent realizations, meaning 50 different
perturbed graphs, so we suspect this is the uncertainty from
the edge-addition stochastic process.

APPENDIX D: STANDARD DEVIATION FOR
EMPIRICAL RESULTS

Figures 25–30 show the standard deviation of NMI and
element-centric clustering similarity metric for the empirical
results. Note that the changes in standard deviation over steps
are always restricted to a small region and the values are kept
in scales that are negligible compared to the mean.
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FIG. 25. Standard deviation of NMI over the percentage of edges
added for the ia-radoslaw-email subnetwork.

FIG. 26. Standard deviation of NMI over the percentage of edges
added for the Enron subnetwork.

FIG. 27. Standard deviation of NMI over the percentage of edges
added for the email-Eu-core-temporal subnetwork.

FIG. 28. Standard deviation of element-centric clustering simi-
larity over the percentage of edges added for the ia-radoslaw-email
subnetwork.

FIG. 29. Standard deviation of element-centric clustering simi-
larity over the percentage of edges added for the Enron subnetwork.

FIG. 30. Standard deviation of element-centric clustering sim-
ilarity over the percentage of edges added for the email-Eu-core-
temporal subnetwork.
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