
RESEARCH ARTICLE

Graph-based machine learning improves just-

in-time defect prediction

Jonathan Bryan1☯*, Pablo MorianoID
2☯*

1 AT&T Cybersecurity, AT&T, Atlanta, GA, United States of America, 2 Computer Science and Mathematics

Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America

☯ These authors contributed equally to this work.

* jz699j@att.com (JB); moriano@ornl.gov (PM)

Abstract

The increasing complexity of today’s software requires the contribution of thousands of

developers. This complex collaboration structure makes developers more likely to introduce

defect-prone changes that lead to software faults. Determining when these defect-prone

changes are introduced has proven challenging, and using traditional machine learning

(ML) methods to make these determinations seems to have reached a plateau. In this work,

we build contribution graphs consisting of developers and source files to capture the

nuanced complexity of changes required to build software. By leveraging these contribution

graphs, our research shows the potential of using graph-based ML to improve Just-In-Time

(JIT) defect prediction. We hypothesize that features extracted from the contribution graphs

may be better predictors of defect-prone changes than intrinsic features derived from soft-

ware characteristics. We corroborate our hypothesis using graph-based ML for classifying

edges that represent defect-prone changes. This new framing of the JIT defect prediction

problem leads to remarkably better results. We test our approach on 14 open-source proj-

ects and show that our best model can predict whether or not a code change will lead to a

defect with an F1 score as high as 77.55% and a Matthews correlation coefficient (MCC) as

high as 53.16%. This represents a 152% higher F1 score and a 3% higher MCC over the

state-of-the-art JIT defect prediction. We describe limitations, open challenges, and how

this method can be used for operational JIT defect prediction.

1 Introduction

Software quality assurance, including source code inspection and testing, has become increas-

ingly necessary for building high-quality software [1]. Software defects, or bugs, are detrimen-

tal to software quality and have a negative economic and reputational impact on software

stakeholders, especially when they lead to software failures [2]. Thus, there is a huge incentive

to detect likely software defects as early as possible in the development process. Reducing the

number of software defects through quick and automatic identification would lead to the pro-

duction of better software by improving its usability and reducing costs associated with

maintenance.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bryan J, Moriano P (2023) Graph-based

machine learning improves just-in-time defect

prediction. PLoS ONE 18(4): e0284077. https://doi.

org/10.1371/journal.pone.0284077

Editor: Orawit Thinnukool, Chiang Mai University,

THAILAND

Received: June 24, 2022

Accepted: March 23, 2023

Published: April 13, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0284077

Copyright: © 2023 Bryan, Moriano. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are available

from the GitHub repository (https://github.com/

lining-nwpu/JiTReliability).

Funding: This manuscript has been authored by

UT-Battelle, LLC under ContractNo. DE-AC05-

00OR22725 with the U.S. Department of Energy.

https://orcid.org/0000-0002-1822-8885
https://doi.org/10.1371/journal.pone.0284077
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0284077&domain=pdf&date_stamp=2023-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0284077&domain=pdf&date_stamp=2023-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0284077&domain=pdf&date_stamp=2023-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0284077&domain=pdf&date_stamp=2023-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0284077&domain=pdf&date_stamp=2023-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0284077&domain=pdf&date_stamp=2023-04-13
https://doi.org/10.1371/journal.pone.0284077
https://doi.org/10.1371/journal.pone.0284077
https://doi.org/10.1371/journal.pone.0284077
http://creativecommons.org/licenses/by/4.0/
https://github.com/lining-nwpu/JiTReliability
https://github.com/lining-nwpu/JiTReliability


Previous research on software quality assurance focuses on either module-level [3] or Just-

In-Time (JIT) defect prediction [4]. The module-level approach uses machine learning (ML)

models trained on historical data obtained from software characteristics, including code

churn, change metadata, and complexity metrics [5]. Defect prediction models detect defect-

prone software modules (e.g., files [6], subsystems [7]). Defect prediction models are then used

to identify software modules that likely contain faulty code. These models can also help priori-

tize software quality assurance efforts, such as code reviews and pre-release testing. The JIT

approach, in contrast, focuses on change-level defect prediction. This means that the focus is

on software changes (i.e., commits) rather than on modules.

JIT has important advantages over module-level defect prediction [4]. First, it reduces

defect detection time: JIT predictions are obtained when changes are ready to be committed,

before the software has been deployed. Second, it provides attribution: JIT predictions are

linked to the author of the change rather than a group of authors. Lastly, it produces finer-

grained predictions: JIT predictions spotlight specific changes, which are often smaller than

coarser-grained prediction modules. Therefore, predicting defect-prone changes using JIT is

preferred over module-level defect prediction.

Current JIT defect prediction models use software characteristics to inform commonly

used, supervised ML models. Traditional features used in this task are related to the diffusion,

size, purpose, history, and experience dimensions of the changes [4]. Recent models also add

context to these features by leveraging the semantic information and syntactic structure hid-

den in source code [8]. Once this set of features has been computed for the targeted software

commits, different ML models are used for JIT defect prediction, including logistic regression

[9] and more sophisticated models, such as ensembles [10] and deep learning [11–13]. More

recently, new features based on representing code semantics using word embeddings to map

change sequences into numeric vectors have been proposed [14].

Obtaining large amounts of accurate historical data is a prerequisite for good performance

in JIT defect prediction [15]. However, this data can be difficult to obtain because the nature

of code commits/changes tends to evolve during the development cycle, which can impact the

performance of JIT defect prediction [16]. In addition, as shown recently [10], even when

using sophisticated ML models, such as ensembles, the achievable performance for JIT defect

prediction still has much room for improvement (i.e., it currently reaches about 31% average

F1 score and 51% Matthews correlation coefficient (MCC) for predicting early exposed

defects).

Here, we introduce a novel framework for JIT defect prediction using contribution graphs

[17] and graph-based ML [18]. Contribution graphs are bipartite graphs in which nodes repre-

sent developers and modules (source code files in our case). Edges in the contribution graph

capture interactions between developers and modules, thereby representing software changes.

We label edges in these graphs to distinguish clean commits from bug-introducing commits

using the Sliwerski-Zimmermann-Zeller (SZZ) algorithm [19]. We then extract features from

the contribution graph using (1) centrality metrics (Setting 1) and (2) community assignments

and node embeddings (Setting 2) [20]. These two feature sets are then used to inform ML algo-

rithms and classify code changes.

Our approach is novel for JIT defect prediction in that it assigns a probability score to each

new code change (i.e., an unlabeled edge in the graph) that indicates the likelihood of that

change being defect-prone. We operationalize this idea using edge classification. Edge classifi-

cation refers to the problem of classifying unknown edge labels in a graph [21]. Here, the

notion of an edge appearing in the future is quantified as a score that measures the likelihood

of it being a defect-prone change. We show the potential of using this approach with higher

classification results (i.e., with a 152% higher F1 score and a 3% higher MCC) compared to a

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 2 / 19

The publisher, by accepting the article for

publication, acknowledges that the U.S.

Government retains a non-exclusive, paid up,

irrevocable, world-wide license to publish or

reproduce the published form of the manuscript, or

allow others to do so, for U.S. Government

purposes. The DOE will provide public access to

these results in accordance with the DOE Public

Access Plan (http://energy.gov/downloads/doe-

public-access-plan). This research was sponsored

in part by Oak Ridge National Laboratory’s

(ORNL’s) Laboratory Directed Research and

Development program and by the DOE, Office of

Science, Office of Workforce Development for

Teachers and Scientists (WDTS) under the

Scientific Undergraduate Laboratory Internship

(SULI) program. Pablo Moriano acknowledges

support from ORNL’s Artificial Intelligence

initiative. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. There was no

additional external funding received for this study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0284077
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan


recent benchmark on JIT defect prediction on early exposed defects over 14 large open-source

projects [10].

The main contributions of this paper are as follows. First, we investigate the use of graph-

based ML for JIT defect prediction. The core of our contribution is data modeling by using

contribution graphs. In particular, we leverage contribution graphs as a modeling framework

to capture the changes that developers make to software files. We used this abstraction as the

basis of edge classification. Specifically, from the contribution graphs, we extract graph-related

features that inform edge classification models when classifying defect-prone changes. Second,

we perform an in-depth evaluation of these graph-based ML models using (1) centrality met-

rics (Setting 1) and (2) community assignments and node embedding features (Setting 2)

while taking into account the unbalanced nature of the dataset. Lastly, we compare these

graph-based models with traditional ML models, including 11 state-of-the art JIT defect detec-

tion methods. Our results show that the graph-based approach provides a 152% higher F1

score and a 3% higher MCC than the state-of-the-art. We are sharing the data [22] and code

[23] used in this research so that our results can be reproduced.

2 Related work

Our research is informed by past work in network analysis for software engineering, JIT defect

prediction, and graph-based ML. Here, we provide an overview of this related work.

2.1 Network analysis in software engineering

Network analysis is used to model the interactions of software elements, including between

software dependencies (i.e., the dependency graph [24]) and between developer and software

modules (i.e., the contribution graph [17]). This modeling framework has also been used to

predict failures in files within a closed networking software project [25], examine the relation-

ship between ownership measures and software failures [26], quantify the impact of network

analysis metrics as indicators of software vulnerabilities [27], and estimate insider threat risk

in a version control system (VCS) [28].

One significant difference between our work and other studies using network analysis is

that our work uses features derived from the contribution graph for JIT defect prediction. In

doing so, we frame the problem of introducing defect-prone changes as the likelihood that

unseen edges introduce them. We explore two kinds of network properties: (1) topological

properties (Setting 1) and (2) community assignations and node embeddings (Setting 2) in the

contribution graph.

2.2 SZZ algorithm

The SZZ algorithm is the primary algorithm used to identify defect-prone changes (i.e., bug-

introducing commits) in a software repo. Using the SZZ algorithm, practitioners can identify

individual commits that introduce defect-prone changes. The SZZ algorithm was introduced

by Śliwerski et al. [19] and was originally conceived for centralized VCSs, such as CVS and its

corresponding commit practices. Later iterations of the SZZ algorithm made it operational for

distributed VCSs, such as git.

The SZZ algorithm uses two sources of data: (1) bug reports (BRs) from an issue tracker sys-

tem (ITS), such as Jira or BugZilla, and (2) historical change logs from a VCS. The SZZ algo-

rithm has two main steps. In the first step, BRs are linked to defect-fixing changes (i.e., bug-

fixing commits). This is achieved by finding explicit calls to BRs in commit messages by using

regular expressions. In the case in which the ITS does not allow the identification of bug fixes,

commit messages using the word fix (or similar) are used as a proxy for identifying defect-

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 3 / 19

https://doi.org/10.1371/journal.pone.0284077


fixing changes. In the second step, once defect-fixing changes are identified, the SZZ algorithm

traces back the modified lines in the source code. Specifically, for each of the identified defect-

fixing changes, the SZZ algorithm uses git blame to identify previous commits that made

changes to those specific lines of code. Git blame also extracts the revision and the last author

to modify those lines. This means that the output of git blame contains a set of candidate com-

mits that may have introduced the defect. From this set of candidates, the SZZ algorithm deter-

mines whether or not any commits can be discarded as a defect-prone change. Borg et al.

provide a detailed description of the heuristic used in the SZZ algorithm [29].

2.3 JIT defect prediction

JIT defect prediction consists of four main steps. First, JIT uses the SZZ algorithm [19] to label

previous changes obtained from a VCS as defect prone or not. The SZZ algorithm is the pri-

mary algorithm used to identify defect-prone changes (i.e., bug-introducing commits) in a

software repo. Second, it quantifies change metrics that characterize changes in the code.

Third, it learns a ML classifier based on the previously computed labeled changes and their

metrics. Finally, JIT defect prediction uses the learned classifier to predict if new code changes

are defect-prone.

An important aspect of JIT defect prediction is identifying and extracting the independent

variables used to build JIT defect prediction models. Generally, there are two approaches for

doing that: feature engineering and feature learning. In the former, features are designed man-

ually. In the latter, features are learned automatically via algorithms as feature representations

from the data.

Early work on JIT defect prediction through feature engineering focused on using features

derived from software change metrics as those directly computed from code changes. They

include variables related to diffusion (e.g., number of modified subsystems), size (e.g., lines of

code added), history (e.g., number of developers who modified the files), and experience (e.g.,

developer experience) [30]. The origin of JIT defect prediction through feature engineering is

usually attributed to Mockus and Weiss [31]. Working with a large, closed telecommunication

code base, Mockus and Weiss introduced the idea of quantifying software change properties to

predict defects for initial maintenance requests (IMRs) when the IMRs consist of multiple

changes. Kim et al. [32] focused on predicting individual defect-prone changes and applied

this method to a variety of open-source code bases. Kamei et al. [4] extended previous work by

applying it to open-source and commercial code bases across multiple industries. Jiang et al.

[33] introduced a personalized defect prediction approach by building a separate prediction

model for each developer. Kononenko et al. [34] added features extracted from code review

databases, thereby leading to an increase in the explanatory power of JIT defect prediction

models. Kamei et al. [35] evaluated the performance of JIT defect prediction in projects still in

their initial development phases. In doing so, they showed that JIT models trained using data

from projects with sufficient history are viable candidates for JIT defect prediction in projects

with limited historical data.

Early work on JIT defect prediction via feature learning focused on estimating feature rep-

resentations by extracting the amount of information in the commit message. Deep learning

approaches, and deep neural networks in particular, are predominantly used to learn feature

representations for JIT defect prediction. For example, Yang at al. [11] built a set of expressive

features from a set of initial changes by leveraging a deep belief network algorithm. Later, they

trained an ML classifier on selected features. Barnett et al. [36] mined commit message content

by using SpamBayes classifiers [37] as filters. More recently, Hoang et al. [12] proposed an

end-to-end deep learning framework, named DeepJIT, which automatically extracts features

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 4 / 19

https://doi.org/10.1371/journal.pone.0284077


from code changes and commit messages and uses them to classify defects. Xu et al. [38] pro-

posed a cross-triplet deep feature embedding method, called CDFE, for cross-app JIT defect

prediction in mobile apps. The CDFE method incorporates a cross-triplet loss function into a

deep neural network to learn high-level feature representation for the cross-app data. This loss

function shortens the distance of commits with similar labels while lengthening the distance

between commits with different labels. Zhuang et al. [14] proposed a method to represent

code semantics based on Abstract Syntax Tress (ASTs). This method works by comparing the

AST of source code before and after a change for extracting change sequences that are then

mapped to a numeric vector by using word-embedding models.

Table 1 summarizes closely related previous work on JIT defect prediction that uses feature

learning. For a comprehensive survey on JIT defect prediction, we refer the reader to the work

by Zhao et al. [30].

To the best of our knowledge, apart from features derived through feature engineering

(based on software code change metrics) and features derived using feature learning, no prior

studies have investigated the use of features derived from the contribution graphs to inform

graph-based ML classifiers to predict the risk of introducing defect-prone changes.

2.4 Graph-based ML

Graph-based ML refers to the use of graph-based related features to train ML algorithms [39].

Graph-based features can be highly predictive, thereby adding value to existing ML models.

Applications of graph-based ML span multiple industries, including attribute prediction in

social networks [40], bot detection [18], understanding the dynamics of opioid doctor shop-

ping [41], and cybersecurity applications, such as detection of lateral movement in enterprise

computer networks [42].

Graph-based ML is based on extracting structural features from graphs. These features can

be obtained from the structure of the graphs or by using representation learning (graph

embeddings). The former refers to traditional structural properties, such as a node’s degrees

and/or centrality metrics [43]. The latter refers to encoding structural information of individ-

ual nodes into a low-dimensional vector space. Graph embedding methods are flexible because

they can adapt during the learning process, as opposed to purely structured features that

require feature engineering. Graph embedding methods are classified based on the algorithm

used for the encoding [44]. This classification includes matrix factorization [45, 46], random

Table 1. Summary of JIT defect prediction works by using feature learning.

Study Year Primary Topic Constraint

Yang et al.

[11]

2015 Proposed Deeper, which consists of a deep belief network and a logistic

regression classifier for JIT defect prediction

Deeper does not fully exploit the true benefits of deep learning because it

uses the same set of traditional features derived from feature

engineering.

Barnett

et al. [36]

2016 Investigated the benefits of adding commit message features for JIT

defect prediction

Leveraging commit message proneness to be defective by using a

SpamBayes classifier may produce overly specific scores for systems to

which theywill be applied.

Hoang

et al. [12]

2019 Introduced DeepJIT, an end-to-end JIT defect prediction model that

learns feature representations from tokenized software changes

andcommit messages

Because code is written using an open, rapidly changing vocabulary,

word embeddings may introduce noise and then cause a negative impact

on the performance of the cross-project defect prediction.

Xu et al.

[38]

2021 Designed CDFE, a deep neural network with triplet loss function for

cross-project JIT defect prediction in mobile apps

Using labeled commit data from other mobile apps to assist the labeling

of the mobile app at hand may be impacted by the imbalanced nature of

JIT defect prediction.

Zhuang

et al. [14]

2022 Introduced ACE based on Abstract Syntax Trees (ASTs) by comparing

the AST of source code before and after a change and computing

change sequences that are mapped to word embeddings

Experiments conducted in projects coded on Java. AST nodes of

different programming languages may differ, thereby influencing JIT

defect prediction performance.

https://doi.org/10.1371/journal.pone.0284077.t001

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 5 / 19

https://doi.org/10.1371/journal.pone.0284077.t001
https://doi.org/10.1371/journal.pone.0284077


walks [20, 47], or deep learning methods [48, 49]. The embedding choice usually depends on

the application [50].

Our work is novel in that it compares second-order proximity metrics, which describe the

proximity of node pairs and their neighborhood’s structure using centrality metrics and a ran-

dom walk graph embedding (i.e., node2vec [20]). node2vec performs biased random

walks by trading the bias between breadth-first and depth-first search. node2vec is parame-

terized using walk length, context size, and bias weights, and its embeddings ensure that nodes

with common neighbors tend to appear close in the embedding space.

3 Methods

This section describes the mathematical frameworks and data sources used to perform this

research. The proposed method for JIT defect prediction leverages contribution graphs to

learn classifiers that distinguish regular commits from defect-prone changes. We extracted

graph-based features to quantify the risk that new changes will introduce defects. Performance

is measured by the the ability of the algorithm to distinguish between regular commits and

defect-prone changes, i.e., edge classification.

An overview of the proposed framework is presented in Fig 1. Our method is composed of

three main phases: dataset generation, training, and testing. In the dataset generation phase,

we build a labeled commit dataset by combining the extracted graph features from the contri-

bution graph (see Section 3.1) and bug-inducing commits produced by the SZZ algorithm.

During the training phase, we process the training data (see Section 3.3) by conducting data

preparation (see Section 3.3.1), model training (see Section 3.3.2), and selection (see Section

3.3.3) on a subset of classifiers (see Section 3.4). During the testing phase, we prepare the data

from given code changes and feed it into the trained model (see Section 3.3.4). Predictions

from the classifiers are used to estimate the quality of the predictions (see Section 3.5). We

associated each step in the proposed method (and their subsequent section numbers) with the

corresponding phase in Fig 1.

3.1 Graph modeling

Each of the steps in our graph modeling framework are detailed below.

3.1.1 Contribution graph. We model contribution graphs as undirected bipartite graphs

made of developers (top nodes) and source code files (bottom nodes). We let H> represent the

set of top nodes, or developers; and we let H? be the set of bottom nodes, or files. Note that

H> and H? are a disjoint set of nodes. Let V ¼ H> [H? be the set of contribution graph

nodes. Let W ¼ foij : ði; jÞ � H> �H?g be the incident matrix of weights, ωij, that captures

Fig 1. Graph-based ML JIT defect prediction pipeline.

https://doi.org/10.1371/journal.pone.0284077.g001

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 6 / 19

https://doi.org/10.1371/journal.pone.0284077.g001
https://doi.org/10.1371/journal.pone.0284077


the number of changes (i.e., commits) made by developer, i, to file, j. The graph G ¼ ðV;WÞ
represents a weighted bipartite graph that captures software changes.

To create the contribution graph, we used changelog metadata entries from git logs. Each

one of these entries is used to extract the timestamps and information about which developer

committed a change to a particular source file. We used Neo4j for storing the bipartite graphs.

Neo4j is a high-performance NoSQL database that enables efficient computation of graph-

related algorithms, including structural properties and node embeddings, as shown in different

applications [51].

3.1.2 One-mode projection. We projected the contribution graph into a one-mode pro-

jection graph (on the developer side). Specifically, we let G> ¼ ðH>;W>Þ be the top, one-

mode projection of G. Two nodes of G> are connected if they have a common neighbor in G,

which means the two developers made changes to the same files. In the one-mode projection,

we aggregated weights, which results in a weighted, one-mode projection described by the

weight matrix, W> ¼ fouv : u; v � H>g, where ouv ¼
PjH?j

r¼1
our þ ovr. We extracted graph-

based features from the one-mode projection graph using the Neo4j Graph Data Science appli-

cation programming interface (API). We assumed that the centrality metrics (Setting 1) and

community assignments along with node embeddings (Setting 2) in the one-mode projection

graph capture the connectivity around both edge endpoints (i.e., developer and file) in the con-

tribution graph. Fig 2 shows an illustration of a toy contribution graph (a) and its one-mode

projection (b).

3.1.3 Edge classification. Edges in the contribution graph are labeled. Edge labels repre-

sent if a particular change is defect-prone or not. Edge classification refers to the task of classi-

fying the edge labels [21]. More formally, consider the set of labeled edges: W‘

>
�W>. Edges

oij 2W‘

>
have a binary label, ℓ 2 {0, 1}. Edge classification consists on determining the labels

of the edges in Wu
>
¼W> nW‘

>
.

The key for the edge classification task is to design features for a pair of nodes. We extracted

two different types of features from the one-mode projection graphs to train ML models. The

first type corresponds to a subset of structural properties. Specifically, we extracted centrality

metrics from the nodes. These metrics capture the relative importance of nodes with respect to

shared changes in the contribution graph. The second type of feature corresponds to node’s

community assignments and embeddings. These assignments and embeddings capture more

complex, nuanced neighborhood information of nodes to reflect the collaborative structure of

software changes. We describe each of them in more detail below.

3.1.4 Graph structural properties (Setting 1). We extracted centrality metrics from the

nodes in the one-mode projection graph as a proxy for structural properties in the contribu-

tion graph. Centrality metrics quantify the relative importance of nodes in the graph [52]. In

the context of contribution graphs, centrality metrics identify developers that contribute to

many changes in similar modules. We extracted the following centrality metrics:

3.1.5 degree. The degree of node i 2 H> is the number of edges attached to it. It is quanti-

fied as dðiÞ ¼
P
ði;jÞ2W>

oij. In the context of contributions graphs, a high degree indicates a

developer that has made changes to many modules in conjunction with other developers. In

other words, they represent highly collaborative developers that made changes across different

modules.

3.1.6 Betweenness. The betweenness of node i 2 H> is the proportion of geodesic paths

that include node i. It is quantified as bðiÞ ¼
P

i;j;k2H>

sjkðiÞ
sjk

, where σjk(i) is the total number of

shortest paths that pass through node i, and σjk is the total number of shortest paths between

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 7 / 19

https://doi.org/10.1371/journal.pone.0284077


nodes j and k. Developers with high betweenness are expected to contribute more widely

among diverse groups of software modules.

3.1.7 Closeness. The closeness of node i 2 H> is the average distance from node i to any

other nodes in the graph that can be reached from node i. It is quantified as cðiÞ ¼ jH>j� 1P
j2H>

dði;jÞ
.

Closeness extends the notion of degree to account for distances to any other nodes beyond

immediate neighbors. Developers with high closeness are expected to contribute to software

modules that are highly dispersed.

3.1.8 Harmonic. The harmonic centrality of node i 2 H> is a variant of the closeness cen-

trality that can be used to deal with unconnected graphs. It is defined as hðiÞ ¼ ðjH>j� 1Þ� 1
P

j2H> ;j6¼i
dði;jÞ

.

3.1.9 PageRank. The PageRank of node i 2 H> measures each developer’s prominence in

the contribution graph. PageRank, which was originally conceived to rank web pages based on

their importance [53], estimates the stationary probability that a random walker traversing the

graph will arrive at a particular node. The stationary probability distribution over all the nodes

is quantified by PRðiÞ ¼ 1� p
jH>j
þ p
P
ði;jÞ2W>

oijPRðjÞ
dðjÞ , where p is a damping factor, usually set to

Fig 2. Contribution graph and its projection. a) A toy contribution graph. Check marks represent clean changes,

whereas cross marks represent defect-prone changes. (b) Corresponding one-mode projection on the developer side.

Classification is driven by developer-based features alone as the one-mode projection graph captures the connectivity

around both endpoints (i.e., developer and file) in the contribution graph.

https://doi.org/10.1371/journal.pone.0284077.g002

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 8 / 19

https://doi.org/10.1371/journal.pone.0284077.g002
https://doi.org/10.1371/journal.pone.0284077


0.85. Because our one-mode developer network does not have directional edges, we treated

each directional edge as two directional edges. Developers with high PageRank are the ones

that contribute to modules that also received contributions from important developers, who

also have a high PageRank.

3.1.10 Communities and node embeddings (Setting 2). The community assignment of

node i 2 H> captures its group identifier. Nodes within the same community are those with a

significantly higher number of edges between them as opposed to other nodes in different

communities [54]. In particular, let C ¼ fc1; c2; . . . ; cjH>jg denote a community partition of

graph H>, thereby indicating the community membership of each node. Meaning, ci and cj

have the same value if both i and j belong to the same community. Here, we identified commu-

nities in the on-mode developer graph using the Louvain algorithm [55]. The Louvain algo-

rithm is based on optimizing the modularity score of each community. The modularity of a

community partition quantifies the quality of the nodes’ community assignment. The optimi-

zation process used in the Louvain algorithm computes how many more densely connected

nodes are inside communities compared to a random graph.

We embedded nodes in the graph G> ¼ ðH>;W>Þ in a d-dimensional space. This means

that every node i 2 G> is represented by a unique d-dimensional vector that contains the coor-

dinate values of node i in the embedding. In other words, let f : H> ! Rd
be the mapping

function from nodes to a feature representation. Equivalently, f is a matrix of size jH>j � d.

The proposed method can be applied using any embedding technique. Here, we used

node2vec because it has shown robust results for link-related tasks [44]. We adopted com-

monly used values for the parameters of node2vec [20], specifically, a walk length of 80, a

context size of 10, in/out of 1.0, return factor of 1.0, and an embedding dimension of 128. Note

that these values are already the default in the Neo4j Graph Data Science API.

We summarize the notation used to model the contribution graphs and their extracted fea-

tures in each Setting in Table 2.

Table 2. Summary of notation used.

Context Notation Description

Contribution graph H> The set of top nodes or developers

H? The set of bottom nodes or files

V The set of contribution graph nodes

W The incident matrix of weights

G ¼ ðV;WÞ The weighted bipartite graph capturing software changes

G> The developer-based one-mode projection

W> Weighted matrix in the developer-based one-mode projection

W‘

>
The set of labeled W> edges

Setting 1 d(i) The degree of node i
b(i) The betweenness of node i
c(i) The closeness of node i
h(i) The harmonic centrality of node i
PR(i) The PageRank of node i

Setting 2 C The community partition

f The node embedding mapping function

https://doi.org/10.1371/journal.pone.0284077.t002

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 9 / 19

https://doi.org/10.1371/journal.pone.0284077.t002
https://doi.org/10.1371/journal.pone.0284077


3.2 Dataset

We tested the proposed method on the dataset collected by Tian et al. [10]. This dataset con-

tains 18 well-known, open source multi-application projects coded in Java (17) and C++ (1).

Note that this dataset tracked nearly the entire development cycle of these projects, as opposed

to a limited software release time window [56]. We reported results on 14 of 18 of these repos

because four of them (POI, Pig, VELOCITY, and XERCESC) have missing commits. We

believe that missing commits may correspond to name changes in the branches of the repo,

and we omitted them for that reason. Table 3 summarizes the dataset used. We describe the

projects in the dataset in terms of age, kilo (thousands) of lines of code (KLOC), number of

changes (# Changes), and early exposed defect ratio used in training (tr.) and testing (te.).

The dataset, which is also available for download [22], focuses on the active middle part of

each software effort by trimming off the inactive start and end of each project. The final dataset

contains over 85% of the changes spanning only 30% of the original development period. This

dataset already contains the annotated, defect-prone changes after running an open-source

implementation of the SZZ algorithm, known as SZZ Unleashed [29].

When processing this dataset, the focus is on identifying early exposed defects by tracking

the time gap between defect-prone changes and defect exposure. A threshold, θ, is used to

identify early exposed defects, which are defects that last less than θ. Specifically, θ = min(4

weeks, 1% × (τ − τ0)), where τ0 and τ are the beginning and the end time of the whole project.

This helps account for the time span of software projects, which can vary from months to

years. We used whether or not a software change contains early exposed defects as the depen-

dent variable for the JIT defect prediction.

Note that the dataset we used here already provides labeled defect introduction fix pairs

[10]. However, the proposed framework is flexible enough to be used in other code repos in

which the SZZ algorithm can be applied on the required version control logs and labeled

defects.

3.3 Study setup

We randomly partition the dataset of labeled changes into training sets (75%) and testing sets

(25%). The testing data is only used once for computing the performance of the classification

Table 3. The 14 open-source target projects from the dataset.

Project Description Age (years) KLOC #Changes Period Pos. tr. Neg. tr. Pos. te. Neg. te.

ActiveMQ High-performance messaging server 13.45 38 10,213 2005–2020 43.34% 56.66% 43.27% 56.73%

Ant A Java-based build tool 8.75 339 14,387 2000–2020 21.43% 78.57% 21.91% 78.09%

Camel An open-source integration framework 11.53 75 38,563 2007–2020 17.24% 82.76% 17.35% 82.65%

Derby Java-based relational database engine 9.42 1350 8,268 2004–2020 41.86% 58.14% 42.01% 57.99%

Geronimo An open-source server runtime 6.79 48 13,137 2003–2020 42.66% 57.34% 43.15% 56.85%

Hadoop Open-source distributed computing system 11.59 102 16,084 2009–2020 47.58% 52.42% 47.41% 52.59%

HBase A distributed, scalable, big data store 5.03 413 10,509 2007–2020 0.26% 99.74% 0.23% 99.77%

IVY A project dependencies managing tool 3.29 135 2,880 2005–2020 35.20% 64.80% 35.38% 64.62%

JCR Repo for Java Technology API 8.82 38 8,651 2004–2020 2.87% 97.13% 2.84% 97.16%

JMeter Load test applications/measure performance 15.89 264 16,341 1998–2020 18.04% 81.96% 18.09% 81.91%

LOG4J2 A logging library for Java 5.37 85 10,690 2010–2020 10.96% 89.04% 11.35% 88.65%

LUCENE Full-featured text search engine library 15.93 183 31,240 2001–2020 20.48% 79.52% 20.60% 79.40%

Mahout Linear algebra framework and Scala DSL 5.52 189 4,115 2008–2020 36.57% 63.43% 36.76% 63.24%

OpenJPA Java Persistence API specification 7.72 108 4,893 2006–2020 32.70% 67.30% 32.49% 67.51%

https://doi.org/10.1371/journal.pone.0284077.t003

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 10 / 19

https://doi.org/10.1371/journal.pone.0284077.t003
https://doi.org/10.1371/journal.pone.0284077


task. We implemented the proposed framework using the scikit-learn [57] and

imbalanced-learn [58] APIs. After the train/test split, the following steps are performed.

3.3.1 Data preparation. We scaled independent variables using min-max normalization.

We noticed that the dataset is imbalanced given that the number of defect-prone changes in

both training and testing datasets is much smaller than the number of benign changes (see

Table 3). We used the Synthetic Minority Oversampling Technique (SMOTE) to handle the

imbalance [59]. SMOTE processes each sample in the minority class to generate new synthetic

samples along the line by joining them to their k-nearest neighbors. We used regular SMOTE

with k = 5, owing to its simplicity and higher performance. SMOTE can also help increase the

framework’s ability to classify defective modules [60]. We applied SMOTE only in the training

dataset.

3.3.2 Build model. We trained prediction models by using the labeled training dataset.

The methods used to train the models are described in Section 3.4.

3.3.3 Select model. To achieve optimal performance, tuning is performed to find the opti-

mal set of hyperparameters for each model. A grid search is used to consider a small combina-

tion of parameters with reasonable values, and a stratified, 10-fold cross validation is

implemented to evaluate model performance during this step.

3.3.4 Apply model. The optimal defect prediction model is applied on the testing dataset.

For each change in the testing dataset, the proposed model predicts whether the change is

likely to introduce a defect and then outputs a binary label.

3.4 Building prediction models

The graph-based ML models for JIT defect prediction are built using two settings. The first set-

ting leverages features extracted from the centrality properties of the one-mode projection

graph (i.e., degree, betweenness, closeness, harmonic, and PageRank). The second setting uses

the community assignment and the nodes’ embeddings in the one-mode projection graph.

Both settings use three types of classifiers: (1) logistic regression (regression-based classi-

fier), (2) random forest (ML-based classifier), and (3) extreme gradient boosting (XGBoost)

(ML-based classifier). These classifiers have been widely used for JIT defect prediction [4, 35,

61]. Each classifier is described below along with their train and test time complexities. Here, n
refers to the number of samples, m refers to the number of features, t is the number of trees, d
is the height of the trees, and x is the number of non-missing entries in the training dataset

[62]. Their default parameters were used unless otherwise noted.

3.4.1 Logistic regression. Logistic regression is used for binary classification [63] and

models the relationship between one or more independent variables (i.e., extracted from the

one-mode projection graph) and a binary dependent variable (i.e., defect-prone or clean

changes). The training and testing time complexities of logistic regression are O(nm) and O
(m) respectively. We performed a grid search over the inverse of the regularization strength

parameter: C 2 [0.01, 0.1, 1.0, 10, 100]. The optimal value is 100. The training and testing time

complexities of logistic regression are O(nm) and O(m), respectively.

3.4.2 Random forest. Random forest is an ensemble method that leverages a large num-

ber of decision trees [64]. Each of these trees focuses on a random subset of features. When

reporting a decision, trees may report different results. The random forest then aggregates

each of the results from the trees to make a final decision. The training and testing time com-

plexities of random forest are O(tnlognm) and O(mt) respectively. We performed a grid search

of trees in the forest parameter: n_estimators 2 [10, 100, 1000]. We found that the opti-

mal value is 100.

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 11 / 19

https://doi.org/10.1371/journal.pone.0284077


3.4.3 XGBoost. XGBoost is an implementation of gradient-boosted decision trees that is

designed for speed and performance [65]. Boosting is an ensemble method in which new mod-

els are added iteratively to improve performance. The process stops at diminishing returns.

Gradient boosting is used to create new models that predict the error of previous models; they

are then added together to make a final decision. Gradient boosting uses gradient descent to

minimize errors when adding new models. The training and testing time complexities of

XGBoost are O(tdxlogn) and O(td) respectively. We performed a grid search of the learning

rate parameter, learning_rate 2[0.001, 0.01, 0.1], and of the number of trees in the forest

parameter, n_estimators 2 [10, 100, 1000]. We found that the optimal set of values is 0.01

for the learning rate and 1000 for the number of trees.

3.5 Evaluation metrics

We used confusion matrix–based metrics to compute the performance of the proposed meth-

ods, which have been widely employed for JIT defect prediction [10, 66]. The basis for compar-

ison is counting the number of code changes that were labeled as true positives (TP), false

positives (FP), false negatives (FN), and true negatives (TN). We focus on Precision, defined as
TP

TPþFP, which gives the likelihood that a detected change is defect-prone; Recall, defined as TP
TPþFN,

which gives the likelihood that a defect-prone change is detected; F1 score, defined as

2�
precision�recall
precisionþrecall, which combines precision and recall to provide a balanced view between them;

and the Matthews correlation coefficient (MCC), defined as TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞ�ðTPþFNÞ�ðTNþFPÞ�ðTNþFNÞ
p ,

which is the Pearson correlation for a contingency table [67]. MCC takes values in the range

[−1, 1], with extreme values −1 and + 1 reached in the case of perfect misclassification and per-

fect classification, respectively. MCC equals 0 is equivalent to the expected value for the coin-

tossing classifier. We include the MCC metric because the above metrics overemphasize the

positive class while not putting much emphasis on the negative class, which is also important

for defect prediction. Note, however, that among the 14 repos that we analyzed, they have dif-

ferent levels of imbalance with only one of them (HBase in Table 2) showing extreme imbal-

ance (i.e., less than 1% for the minority class [68]). Therefore, we report results by using

precision, recall, and F1 scores in addition to MCC. We let the reader explore the literature

[69, 70] for a more thorough discussion of the advantages of MCC over other classification

metrics. We evaluate the performance of our proposed framework against a state-of-the-art

baseline that uses software-level characteristics as features of a random forest classifier [10].

To compare the performance of the proposed framework using different classifiers over a

range of detection thresholds, we used the Precision-Recall (PR) curve. We chose the PR curve

instead of the commonly used receiver operating characteristic curve because the PR curve is bet-

ter suited for handling highly imbalanced datasets [71, 72]. We reported the results of precision,

recall, and F1 score based on the optimal threshold obtained from the PR curve for the F1 score.

We report results for the MCC based on the default threshold of 0.5. The PR curve also allows

for a head-to-head method comparison (independent of thresholds) based on the area under the

PR curve (AUC-PR). Higher percentages indicate better overall performance. Note that this met-

ric was not computed in the state-of-the-art baseline. Given that our results are aggregated over

different datasets, for comparison we report the mean value and the average rank of each classi-

fier on each metric across the 14 datasets (shown in the Avg. R column in Table 4).

4 Results

This section details the performance of the proposed framework based on graph-based ML for

JIT defect prediction.

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 12 / 19

https://doi.org/10.1371/journal.pone.0284077


4.1 Comparison of graph-based ML with the baseline

We applied the two settings of graph-based ML classifiers and measured the performance in

the classification task by using the mean and average ranks of Precision, Recall, F1 score,

AUC-PR, and MCC across the 14 repositories of code. These metrics are defined in Section

3.5. Table 4 summarizes the results based on the performance evaluation in the two settings

(see Section 3.4 for details). We observe that the graph-based ML classifiers based on random

forest and XGBoost (in both settings) outperform the baseline that uses a random forest classi-

fier in terms of F1 score and MCC. The baseline reports lower precision on average than the

proposed framework in both settings. This means that the proposed framework produces

fewer FPs, even when using a simpler classifier, such as logistic regression. Likewise, the base-

line reports lower average recall results, suggesting that the proposed framework detects more

defect-prone changes (TPs) than the baseline, on average. The F1 scores obtained by the pro-

posed framework show a relative improvement of at least 90% (from 30.83% to 58.71%) for the

logistic regression classifier in Setting 1 and as much as 152% (from 30.83% to 77.55%) for the

XGBoost classifier in Setting 1. Finally, the MCC scores obtained with the proposed frame-

work are relatively higher than the baseline for random forest and XGBoost classifiers (i.e., 3%

[from 51.41% to 53.16%] and 2% [from 51.41% to 52.34%] in Setting 1 and 1% [from 51.41%

to 52.15%] and 2% [from 51.41% to 52.34%] in Setting 2). These MCC scores reflect a moder-

ate positive relationship (between 0.3 and 0.7 based on [73]). Yet, this does not hold for the

logistic regression classifier. Note, however, that the F1 score and MCC results are concordant

when using random forest and XGBoost classifiers, meaning that we obtain consistent pre-

ferred classifiers regardless of whether we use an F1 score or MCC score when comparing with

the baseline [70]. This provides empirical evidence that the proposed framework performs bet-

ter than the state-of-the-art baseline when using classifiers of similar complexity.

4.2 Comparison of graph-based ML classifiers

We also compare the performance of different classifiers in each setting by using the mean of

AUC-PR. Under Setting 1, the three classifiers perform similarly with a slight advantage of

logistic regression (80.74%) over random forest (80.22%) and XGBoost (79.93%). The relative

performance increase of logistic regression based on AUC-PR is at most 1% over XGBoost.

Note, however, that the XGBoost classifier tends to perform best in terms of average ranking

across the 14 repos (i.e., [1.64] over random forest [2.07] and logistic regression [2.29]). Under

Setting 2, the best performing classifier based on average AUC-PR is logistic regression

(81.51%) followed by XGBoost (80.61%) with a relative performance increase of at most 1%.

However, like in Setting 1, the best performing classifier based on rankings is again XGBoost

Table 4. Classification results for both settings with the two best performing classifiers shown in bold text.

Precision Recall F1 score MCC AUC-PR

Mean Avg. R Mean Avg. R Mean Avg. R Mean Avg. R Mean Avg. R

Setting 1 Logistic Regression 0.6050 2.57 0.6005 2.64 0.5871 2.86 0.3393 2.64 0.8074 2.29

Random Forest 0.7359 2.00 0.8241 1.86 0.7724 1.79 0.5316 1.86 0.8022 2.07

XGBoost 0.7341 1.43 0.8239 1.50 0.7755 1.36 0.5234 1.50 0.7993 1.64

Setting 2 Logistic Regression 0.6407 2.50 0.7773 2.36 0.6950 2.36 0.3231 2.64 0.8151 1.93

Random Forest 0.7343 2.07 0.8237 2.00 0.7714 2.00 0.5215 2.07 0.8015 2.21

XGBoost 0.7418 1.43 0.8235 1.64 0.7748 1.64 0.5234 1.29 0.8061 1.86

Beseline [10] Random Forest 0.4673 1.03 0.7644 1.03 0.3083 1.03 0.5141 1.03 — —

https://doi.org/10.1371/journal.pone.0284077.t004

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 13 / 19

https://doi.org/10.1371/journal.pone.0284077.t004
https://doi.org/10.1371/journal.pone.0284077


(1.86) over logistic regression (1.93) and random forest (2.21). This suggests that across repos,

XGBoost consistently has the best performance despite outliers.

In general, we observe that the performance of graph-based ML classifiers is similar in each

setting based on mean AUC-PR. The observed differences based on rankings are of at most

0.65 (from 1.64 of XGBoost to 2.29 of logistic regression) in Setting 1 and 0.35 (from 1.86 of

XGBoost to 2.21 of random forest) in Setting 2. This suggests that the exclusive use of struc-

tural features from the contribution graphs in the classification task (i.e., Setting 1) benefits

from a more complex classification function derived from more advanced classifiers, such as

random forest and XGBoost. In contrast, under Scenario 2, the more complex features make

the classifier task less determinant. This observation is also corroborated by the reported aver-

age rankings. Recall that in Setting 2, we use community assignments and node embeddings of

length 128.

5 Discussion

JIT defect prediction is at the core of software quality assurance efforts. Here, we proposed

using graph-based ML to improve JIT defect prediction. To do so, we constructed contribution

graphs (or bipartite graphs made of developers and source files) and framed the JIT defect pre-

diction challenge as an edge classification problem, in which the objective was to classify

defect-prone edges in the contribution graph. We extracted features from a projected version

of the contribution graph by computing centrality measures of the nodes (Setting 1) and com-

munity assignment and node embeddings (Setting 2). We showed that the relative perfor-

mance increase in the JIT defect prediction task is 152% for F1 score and 3% for MCC over the

state-of-the-art baseline when using Setting 1.

We validated the effectiveness of the proposed approach by performing JIT defect predic-

tion on 14 open-source software projects. We assessed the predictive power of graph-based

features on edge classification using logistic regression, random forest, and XGBoost classifi-

ers. Overall, we found that using graph-based features improved classification accuracy over

traditional repo-based features, such as those related to size, purpose, and history of code

bases. Comparing Setting 1 and Setting 2, we find that they tend to produce similar results

encoded in almost negligible differences in the mean of classification results. Comparing clas-

sification models based on rankings, XGBoost outperformed random forest and logistic

regression for the code bases we tested in our approach—at the expense of computational

complexity. We conclude, however, that by using the features derived from Setting 2, the deci-

sion of what classifier to use for better performance is less important and produces negligible

differences. We are sharing the data [22] and code [23] used in this research so that our results

can be reproduced.

The proposed graph-based ML framework is effective at improving the detection perfor-

mance of JIT defect prediction. Having noted the potential, we are also aware of some limita-

tions of the proposed work.

5.1 Accuracy of the SZZ algorithm

Our analysis is based on the assumption that code changes are correctly labeled by the SZZ

algorithm. We acknowledge that SZZ can mislabel changes, thereby impacting the results of

JIT defect prediction [74].

5.2 Extracting features from static graphs

We study a snapshot of a contribution graph, but this is inherently dynamic. This implies that

the structural features and the node embeddings extracted using node2vec need to be

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 14 / 19

https://doi.org/10.1371/journal.pone.0284077


recomputed when the graph changes so that they do not generalize to unseen nodes and/or

edges. Thus, we did not assess, until what extent, the temporal information of developers

changing files may be useful for the prediction of software defects.

5.3 Strict focus in network topology

Our analysis relies on the structure of the contribution graphs to generate classification fea-

tures. We do not consider node and/or edge attributes, such as experience, programming pro-

ficiency, and education, in the case of nodes; and we do not consider characteristics of code

changes, such as size, diversification of changes, and time, in the case of edges.

5.4 Feature-importance assessment

We report results based on average performance and rankings for precision, recall, F1 score,

and AUC-PRC. This compact performance representation can hinder specific performance

details for particular code bases and the effect of model features (for both Setting 1 and Setting

2).

5.5 Classifier’s complexity and interpretability

Performance gains obtained by using the graph-based ML classifiers are fueled by the rich set

of features extracted from the contribution graphs. However, classification results are also

dependent on the type of classifier used. In that respect, both complexity and interpretability

are advantages of the simpler models, such as logistic regression, as opposed to more robust

models, such as random forest and XGBoost, despite superior performance.

5.6 Use of default graph algorithms’ parameter values

We run the graph algorithms to extract features from the one-mode projection graphs by

using their default parameters. See related documentation of graph algorithm parameters in

[75]. Thus, we do not optimize results by tuning these parameters.

5.7 Use of AUC-style metrics to compare classifiers

Note that AUC-style metrics are based on a family of possible classifiers at different thresholds

instead of a specific classifier. Because in practice only a single classifier can be deployed, we

also include other metrics that focus on a single threshold (i.e., F1 score and MCC) to better

qualify the best performing classifier.

6 Conclusion

In this paper, we show the potential of graph-based ML for JIT defect prediction. The pro-

posed framework outperforms the state-of-the-art in JIT defect prediction with a higher aver-

age F1 score (152%) and higher average MCC (3%) across 14 open-source projects. Our

contribution focus on characterizing the process of building software using a contribution

graph (a bipartite graph of developers and source files) by capturing the nuanced structure of

code collaborations. In the contribution graph, edges represent code changes made by devel-

opers. Our proposed framework leverages centrality metrics (Setting 1) and node’s community

assignments and embeddings (Setting 2) extracted from the contribution graph for edge classi-

fication. Relying on this abstraction, we detailed a classification framework that can decide

whether a change is defect-prone or not.

Future work will include examining the effectiveness of the proposed approach using

inductive embedding frameworks, such as GraphSAGE [76]. The approach proposed in this

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 15 / 19

https://doi.org/10.1371/journal.pone.0284077


work would benefit from an inductive framework that can efficiently generate node embed-

dings from previously unseen graph data by aggregating features from node-local neighbor-

hoods, including node attributes. In addition, future work could include benchmarking the

effectiveness of the proposed framework with more diverse codebases to further improve the

generalizability of the proposed method. A working prototype for JIT defect prediction using

the principles described in this paper seems feasible because the tools are available and ready

to use in the Neo4j Graph Data Science API.

Acknowledgments

We are grateful to the reviewers and the editor for their constructive input that help us to

improve our manuscript. Pablo Moriano thanks David Womble and Sudip Seal for their

guidance.

Author Contributions

Conceptualization: Pablo Moriano.

Data curation: Jonathan Bryan.

Formal analysis: Pablo Moriano.

Funding acquisition: Pablo Moriano.

Investigation: Jonathan Bryan, Pablo Moriano.

Methodology: Pablo Moriano.

Project administration: Pablo Moriano.

Resources: Pablo Moriano.

Software: Jonathan Bryan.

Supervision: Pablo Moriano.

Validation: Pablo Moriano.

Visualization: Jonathan Bryan, Pablo Moriano.

Writing – original draft: Pablo Moriano.

Writing – review & editing: Pablo Moriano.

References
1. Bacchelli A, Bird C. Expectations, outcomes, and challenges of modern code review. In: 35th Interna-

tional Conference on Software Engineering (ICSE); 2013. p. 712–721.

2. Telang R, Wattal S. An empirical analysis of the impact of software vulnerability announcements on firm

stock price. IEEE Trans Softw Eng. 2007; 33(8):544–557. https://doi.org/10.1109/TSE.2007.70712

3. Hassan AE. Predicting faults using the complexity of code changes. In: 31st IEEE International Confer-

ence on Software Engineering (ICSE); 2009. p. 78–88.

4. Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, et al. A large-scale empirical study of

just-in-time quality assurance. IEEE Trans Softw Eng. 2012; 39(6):757–773. https://doi.org/10.1109/

TSE.2012.70

5. Hall T, Beecham S, Bowes D, Gray D, Counsell S. A systematic literature review on fault prediction per-

formance in software engineering. IEEE Trans Softw Eng. 2011; 38(6):1276–1304. https://doi.org/10.

1109/TSE.2011.103

6. Zimmermann T, Premraj R, Zeller A. Predicting defects for eclipse. In: Third International Workshop on

Predictor Models in Software Engineering (PROMISE’07: ICSE Workshops 2007); 2007. p. 9–9.

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 16 / 19

https://doi.org/10.1109/TSE.2007.70712
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1371/journal.pone.0284077


7. Nagappan N, Ball T. Use of relative code churn measures to predict system defect density. In: 27th

International Conference on Software Engineering (ICSE); 2005. p. 284–292.

8. Kondo M, German DM, Mizuno O, Choi EH. The impact of context metrics on just-in-time defect predic-

tion. Empir Softw Eng. 2020; 25(1):890–939. https://doi.org/10.1007/s10664-019-09736-3

9. Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, et al. A large-scale empirical study of

just-in-time quality assurance. IEEE Trans Softw Eng. 2012; 39(6):757–773. https://doi.org/10.1109/

TSE.2012.70

10. Tian Y, Li N, Tian J, Zheng W. How Well Just-In-Time Defect Prediction Techniques Enhance Software

Reliability? In: 20th IEEE International Conference on Software Quality, Reliability and Security (QRS);

2020. p. 212–221.

11. Yang X, Lo D, Xia X, Zhang Y, Sun J. Deep learning for just-in-time defect prediction. In: 15th IEEE

International Conference on Software Quality, Reliability and Security (QRS); 2015. p. 17–26.

12. Hoang T, Dam HK, Kamei Y, Lo D, Ubayashi N. DeepJIT: an end-to-end deep learning framework for

just-in-time defect prediction. In: 16th IEEE/ACM International Conference on Mining Software Reposi-

tories (MSR); 2019. p. 34–45.

13. Qiao L, Wang Y. Effort-aware and just-in-time defect prediction with neural network. PloS one. 2019; 14

(2):e0211359. https://doi.org/10.1371/journal.pone.0211359 PMID: 30707738

14. Zhuang W, Wang H, Zhang X. Just-in-time defect prediction based on AST change embedding. Knowl

Based Syst. 2022; 248:108852. https://doi.org/10.1016/j.knosys.2022.108852

15. Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B. Cross-project defect prediction: a large scale

experiment on data vs. domain vs. process. In: 7th joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/

FSE); 2009. p. 91–100.

16. McIntosh S, Kamei Y. Are fix-inducing changes a moving target? a longitudinal case study of just-in-

time defect prediction. IEEE Trans Softw Eng. 2017; 44(5):412–428. https://doi.org/10.1109/TSE.2017.

2693980

17. Pinzger M, Nagappan N, Murphy B. Can developer-module networks predict failures? In: 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE); 2008. p. 2–12.

18. Abou Daya A, Salahuddin MA, Limam N, Boutaba R. A graph-based machine learning approach for bot

detection. In: IFIP/IEEE Symposium on Integrated Network and Service Management (IM); 2019.

p. 144–152.

19. Śliwerski J, Zimmermann T, Zeller A. When do changes induce fixes? Softw Eng Notes. 2005; 30(4):1–

5.

20. Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: 22nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining; 2016. p. 855–864.

21. Aggarwal C, He G, Zhao P. Edge classification in networks. In: 32nd IEEE International Conference on

Sata Engineering (ICDE); 2016. p. 1038–1049.

22. Ning L. JiTReliability; 2020. https://github.com/lining-nwpu/JiTReliability.git.

23. Bryan J. defect-prediction; 2022. https://github.com/jtbryan/defect-prediction.

24. Zimmermann T, Nagappan N. Predicting defects using network analysis on dependency graphs. In:

30th IEEE International Conference on Software Engineering; 2008. p. 531–540.

25. Meneely A, Williams L, Snipes W, Osborne J. Predicting failures with developer networks and social

network analysis. In: 16th ACM SIGSOFT International Symposium on Foundations of Software Engi-

neering (FSE); 2008. p. 13–23.

26. Bird C, Nagappan N, Murphy B, Gall H, Devanbu P. Don’t touch my code! Examining the effects of own-

ership on software quality. In: 19th ACM SIGSOFT Symposium and the 13th European Conference on

Foundations of Software Engineering (FSE); 2011. p. 4–14.

27. Shin Y, Meneely A, Williams L, Osborne JA. Evaluating complexity, code churn, and developer activity

metrics as indicators of software vulnerabilities. IEEE Trans Softw Eng. 2010; 37(6):772–787. https://

doi.org/10.1109/TSE.2010.81

28. Moriano P, Pendleton J, Rich S, Camp LJ. Insider threat event detection in user-system interactions. In:

International Workshop on Managing Insider Security Threats (MIST); 2017. p. 1–12.

29. Borg M, Svensson O, Berg K, Hansson D. SZZ unleashed: An open implementation of the SZZ algo-

rithm featuring example usage in a study of just-in-time bug prediction for the Jenkins project. In: 3rd

ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evalua-

tion; 2019. p. 7–12.

30. Zhao Y, Damevski K, Chen H. A Systematic Survey of Just-In-Time Software Defect Prediction: Online

Supplement. ACM Computing Surveys. 2022;.

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 17 / 19

https://doi.org/10.1007/s10664-019-09736-3
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1371/journal.pone.0211359
http://www.ncbi.nlm.nih.gov/pubmed/30707738
https://doi.org/10.1016/j.knosys.2022.108852
https://doi.org/10.1109/TSE.2017.2693980
https://doi.org/10.1109/TSE.2017.2693980
https://github.com/lining-nwpu/JiTReliability.git
https://github.com/jtbryan/defect-prediction
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1371/journal.pone.0284077


31. Mockus A, Weiss DM. Predicting risk of software changes. Bell Labs Tech J. 2000; 5(2):169–180.

https://doi.org/10.1002/bltj.2229

32. Kim S, Whitehead EJ, Zhang Y. Classifying software changes: Clean or buggy? IEEE Trans Softw Eng.

2008; 34(2):181–196. https://doi.org/10.1109/TSE.2007.70773

33. Jiang T, Tan L, Kim S. Personalized defect prediction. In: 28th IEEE/ACM International Conference on

Automated Software Engineering (ASE); 2013. p. 279–289.

34. Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW. Investigating code review quality: Do people

and participation matter? In: IEEE International Conference on Software Maintenance and Evolution

(ICSME); 2015. p. 111–120.

35. Kamei Y, Fukushima T, McIntosh S, Yamashita K, Ubayashi N, Hassan AE. Studying just-in-time defect

prediction using cross-project models. Empir Softw Eng. 2016; 21(5):2072–2106. https://doi.org/10.

1007/s10664-015-9400-x

36. Barnett JG, Gathuru CK, Soldano LS, McIntosh S. The relationship between commit message detail

and defect proneness in java projects on github. In: 13th IEEE/ACM Working Conference on Mining

Software Repositories (MSR); 2016. p. 496–499.

37. Meyer TA, Whateley B. SpamBayes: Effective open-source, Bayesian based, email classification sys-

tem. In: 7th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference (CEAS);

2004.

38. Xu Z, Zhao K, Zhang T, Fu C, Yan M, Xie Z, et al. Effort-aware just-in-time bug prediction for mobile

apps via cross-triplet deep feature embedding. IEEE Transactions on Reliability. 2021; 71(1):204–220.

https://doi.org/10.1109/TR.2021.3066170

39. Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: Methods and applications. IEEE

Data Eng Bull. 2017; 40(3):52––74.

40. Ding Y, Yan S, Zhang Y, Dai W, Dong L. Predicting the attributes of social network users using a graph-

based machine learning method. Comput Commun. 2016; 73:3–11. https://doi.org/10.1016/j.comcom.

2015.07.007

41. Perry BL, Yang KC, Kaminski P, Odabas M, Park J, Martel M, et al. Co-prescription network reveals

social dynamics of opioid doctor shopping. PloS One. 2019; 14(10):e0223849. https://doi.org/10.1371/

journal.pone.0223849 PMID: 31652266

42. Bowman B, Laprade C, Ji Y, Huang HH. Detecting Lateral Movement in Enterprise Computer Networks

with Unsupervised Graph AI. In: 23rd International Symposium on Research in Attacks, Intrusions and

Defenses (RAID); 2020.

43. Bhagat S, Cormode G, Muthukrishnan S. Node classification in social networks. In: Social Network

Data Analytics. Springer; 2011. p. 115–148.

44. Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: A survey. Knowl-

Based Syst. 2018; 151:78–94. https://doi.org/10.1016/j.knosys.2018.03.022

45. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;

290(5500):2323–2326. https://doi.org/10.1126/science.290.5500.2323 PMID: 11125150

46. Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In:

14th International Conference on Neural Information Processing Systems (NIPS). vol. 14; 2001.

p. 585–591.

47. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. In: 20th ACM

SIGKDD international Conference on Knowledge Discovery and Data Mining (KDD); 2014. p. 701–710.

48. Wang D, Cui P, Zhu W. Structural deep network embedding. In: 22nd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining; 2016. p. 1225–1234.

49. Cao S, Lu W, Xu Q. Deep neural networks for learning graph representations. In: 13th AAAI Conference

on Artificial Intelligence. vol. 30; 2016.

50. Nelson W, Zitnik M, Wang B, Leskovec J, Goldenberg A, Sharan R. To embed or not: network embed-

ding as a paradigm in computational biology. Front Genet. 2019; 10:381. https://doi.org/10.3389/fgene.

2019.00381 PMID: 31118945

51. Gong F, Ma Y, Gong W, Li X, Li C, Yuan X. Neo4j graph database realizes efficient storage perfor-

mance of oilfield ontology. PloS One. 2018; 13(11):e0207595. https://doi.org/10.1371/journal.pone.

0207595 PMID: 30444913

52. Sabidussi G. The centrality index of a graph. Psychometrika. 1966; 31(4):581–603. https://doi.org/10.

1007/BF02289527 PMID: 5232444

53. Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Comput Netw. 1998; 30

(1-7):107–117.

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 18 / 19

https://doi.org/10.1002/bltj.2229
https://doi.org/10.1109/TSE.2007.70773
https://doi.org/10.1007/s10664-015-9400-x
https://doi.org/10.1007/s10664-015-9400-x
https://doi.org/10.1109/TR.2021.3066170
https://doi.org/10.1016/j.comcom.2015.07.007
https://doi.org/10.1016/j.comcom.2015.07.007
https://doi.org/10.1371/journal.pone.0223849
https://doi.org/10.1371/journal.pone.0223849
http://www.ncbi.nlm.nih.gov/pubmed/31652266
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1126/science.290.5500.2323
http://www.ncbi.nlm.nih.gov/pubmed/11125150
https://doi.org/10.3389/fgene.2019.00381
https://doi.org/10.3389/fgene.2019.00381
http://www.ncbi.nlm.nih.gov/pubmed/31118945
https://doi.org/10.1371/journal.pone.0207595
https://doi.org/10.1371/journal.pone.0207595
http://www.ncbi.nlm.nih.gov/pubmed/30444913
https://doi.org/10.1007/BF02289527
https://doi.org/10.1007/BF02289527
http://www.ncbi.nlm.nih.gov/pubmed/5232444
https://doi.org/10.1371/journal.pone.0284077


54. Fortunato S. Community detection in graphs. Phys Rep. 2010; 486(3-5):75–174. https://doi.org/10.

1016/j.physrep.2009.11.002

55. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J

Stat Mech: Theory Exp. 2008; 2008(10):P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

56. Nam J, Kim S. CLAMI: Defect Prediction on Unlabeled Datasets (T). In: 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE); 2015. p. 452–463.

57. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. J Mach Learn Res. 2011; 12:2825–2830.

58. Lemaı̂tre G, Nogueira F, Aridas CK. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbal-

anced Datasets in Machine Learning. J Mach Learn Res. 2017; 18(17):1–5.

59. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling tech-

nique. J Artif Intell Res. 2002; 16:321–357. https://doi.org/10.1613/jair.953

60. Tantithamthavorn C, Hassan AE, Matsumoto K. The impact of class rebalancing techniques on the per-

formance and interpretation of defect prediction models. IEEE Trans Softw Eng. 2018; 46(11):1200–

1219. https://doi.org/10.1109/TSE.2018.2876537

61. Gupta A, Sharma S, Goyal S, Rashid M. Novel XGBoost tuned machine learning model for software

bug prediction. In: International Conference on Intelligent Engineering and Management (ICIEM); 2020.

p. 376–380.

62. Surana S. Computational Complexity of Machine Learning Models—II; 2021. https://www.kaggle.com/

general/263127.

63. Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied Logistic Regression. John Wiley & Sons; 2013.

64. Breiman L. Random forests. Mach Learn. 2001; 45(1):5–32. https://doi.org/10.1023/A:1010933404324

65. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining; 2016. p. 785–794.

66. Liu J, Zhou Y, Yang Y, Lu H, Xu B. Code churn: A neglected metric in effort-aware just-in-time defect

prediction. In: ACM/IEEE International Symposium on Empirical Software Engineering and Measure-

ment (ESEM); 2017. p. 11–19.

67. Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and

correlation. arXiv preprint arXiv:201016061. 2020;.

68. Google. Imbalanced Data; 2022. https://developers.google.com/machine-learning/data-prep/construct/

sampling-splitting/imbalanced-data.

69. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and

accuracy in binary classification evaluation. BMC genomics. 2020; 21(1):1–13. https://doi.org/10.1186/

s12864-019-6413-7 PMID: 31898477

70. Yao J, Shepperd M. The impact of using biased performance metrics on software defect prediction

research. Inf Softw Technol. 2021; 139:106664. https://doi.org/10.1016/j.infsof.2021.106664

71. Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: 23rd International

Conference on Machine Learning (ICML); 2006. p. 233–240.

72. Moriano P, Finke J, Ahn YY. Community-based event detection in temporal networks. Sci Rep. 2019; 9

(1):1–9. https://doi.org/10.1038/s41598-019-40137-0 PMID: 30867459

73. Ratner B. The correlation coefficient: Its values range between+ 1/- 1, or do they? J Target Meas Anal

Mark. 2009; 17(2):139–142. https://doi.org/10.1057/jt.2009.5

74. Fan Y, Xia X, Da Costa DA, Lo D, Hassan AE, Li S. The impact of changes mislabeled by SZZ on just-

in-time defect prediction. IEEE Trans Softw Eng. 2021; 47(8):1559–1586. https://doi.org/10.1109/TSE.

2019.2929761

75. Neo4j. Graph algorithms; 2022. https://neo4j.com/docs/graph-data-science/current/algorithms/.

76. Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. In: 30th Confer-

ence on Neural Information Processing Systems (NIPS). vol. 30; 2017.

PLOS ONE Graph machine learning improves just-in-time defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0284077 April 13, 2023 19 / 19

https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/TSE.2018.2876537
https://www.kaggle.com/general/263127
https://www.kaggle.com/general/263127
https://doi.org/10.1023/A:1010933404324
https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
https://doi.org/10.1016/j.infsof.2021.106664
https://doi.org/10.1038/s41598-019-40137-0
http://www.ncbi.nlm.nih.gov/pubmed/30867459
https://doi.org/10.1057/jt.2009.5
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1109/TSE.2019.2929761
https://neo4j.com/docs/graph-data-science/current/algorithms/
https://doi.org/10.1371/journal.pone.0284077

