
IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023 22111

CANShield: Deep-Learning-Based Intrusion
Detection Framework for Controller
Area Networks at the Signal Level
Md Hasan Shahriar , Student Member, IEEE, Yang Xiao , Member, IEEE,

Pablo Moriano , Senior Member, IEEE, Wenjing Lou , Fellow, IEEE,
and Y. Thomas Hou , Fellow, IEEE

Abstract—Modern vehicles rely on a fleet of electronic con-
trol units (ECUs) connected through controller area network
(CAN) buses for critical vehicular control. With the expansion of
advanced connectivity features in automobiles and the elevated
risks of internal system exposure, the CAN bus is increasingly
prone to intrusions and injection attacks. As ordinary injection
attacks disrupt the typical timing properties of the CAN data
stream, rule-based intrusion detection systems (IDS) can easily
detect them. However, advanced attackers can inject false data
to the signal/semantic level, while looking innocuous by the pat-
tern/frequency of the CAN messages. The rule-based IDS, as
well as the anomaly-based IDS, are built merely on the sequence
of CAN messages IDs or just the binary payload data and are
less effective in detecting such attacks. Therefore, to detect such
intelligent attacks, we propose CANShield, a deep learning-based
signal-level intrusion detection framework for the CAN bus.
CANShield consists of three modules: 1) a data preprocessing
module that handles the high-dimensional CAN data stream at
the signal level and parses them into time series suitable for a
deep learning model; 2) a data analyzer module consisting of
multiple deep autoencoder (AE) networks, each analyzing the
time-series data from a different temporal scale and granularity;
and 3) finally an attack detection module that uses an ensem-
ble method to make the final decision. Evaluation results on two
high-fidelity signal-based CAN attack data sets show the high
accuracy and responsiveness of CANShield in detecting advanced
intrusion attacks.

Index Terms—Controller area networks (CANs), deep learning,
ensemble method, intrusion detection systems (IDS).

Manuscript received 9 May 2023; revised 1 July 2023; accepted
26 July 2023. Date of publication 8 August 2023; date of current version
7 December 2023. This work was supported in part by the U.S. National
Science Foundation (NSF) under Grant CNS-1837519 and Grant CNS-
2235232; in part by the Virginia Commonwealth Cyber Initiative (CCI); and
in part by the Laboratory Directed Research and Development Program of
Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for
the U.S. Department of Energy. (Corresponding author: Md Hasan Shahriar.)

Md Hasan Shahriar and Wenjing Lou are with the Department of Computer
Science, Virginia Polytechnic Institute and State University, Blacksburg, VA
24061 USA (e-mail: hshahriar@vt.edu; wjlou@vt.edu).

Yang Xiao is with the Department of Computer Science, University of
Kentucky, Lexington, KY 40506 USA (e-mail: xiaoy@uky.edu).

Pablo Moriano is with the Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37930 USA (e-mail:
moriano@ornl.gov).

Y. Thomas Hou is with the Bradley Department of Electrical and Computer
Engineering, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061 USA (e-mail: thou@vt.edu).

Digital Object Identifier 10.1109/JIOT.2023.3303271

I. INTRODUCTION

MODERN vehicles are becoming increasingly comput-
erized to ensure driver’s safety and convenience. The

fusion of multimodal data from different types of sen-
sors enables vehicles to recognize the driving context and
make crucial decisions. The majority of the vehicles’ crit-
ical functionalities, including acceleration, braking, steer-
ing, engine control, etc., involve dedicated microcontroller
modules, known as electronic control units (ECUs), which
are connected by one or more automotive communication
buses running standardized protocols. Controller area network
(CAN), also known as the CAN bus protocol, is the de
facto automobile communication standard for safety-critical
ECUs [1]. More recently, CAN bus enables vehicles to imple-
ment advanced driver assistance systems (ADAS), one of the
fastest-growing applications in the automotive sector, pro-
viding enhanced passenger experience and safety. Moreover,
advancements in wireless communication technology (e.g., 5G
and V2X) have enabled the interface to connect with the
internal ECUs from the outside network to conduct diagnostics
or update firmware over-the-air (FOTA) remotely, rather than
visiting a service facility [2]. Infotainment features, such as
Bluetooth, Wi-Fi, and other smart interfaces, are also becom-
ing prevalent in automobiles to add more convenience to the
passengers [1]. Besides, the integration of Internet of Things
(IoT) technology in the automotive industry, also known as
Automotive IoT presents huge opportunities [3], such as opti-
mizing the vehicles’ performance, improving transportation
management, and enhancing vehicle safety through predictive
maintenance, AI-powered driving assistance, connectivity, etc.

The increased connectivity of modern vehicles as well
as Automotive IoT technologies nonetheless increases the
susceptibility of vehicular systems to remote attacks and mes-
sage injections. The ability to hijack an ECU and inject
stealthy messages into the vehicles’ internal communica-
tion systems allows attackers to circumvent a wide array of
safety-critical systems and control a wide range of vehicu-
lar functions. Researchers discovered several remote access
points on connected vehicles and demonstrated that attackers
could remotely exploit them to take control of the vehi-
cles, including disabling the brakes, braking individual wheels,
stopping the engine, and so on [4], [5]. For instance, Miller [6]

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0289-8611
https://orcid.org/0000-0002-0946-3197
https://orcid.org/0000-0002-1822-8885
https://orcid.org/0000-0002-2421-4623
https://orcid.org/0000-0003-3716-5768

22112 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

remotely compromised a Jeep and transmitted malicious CAN
messages, which led to the vehicle malfunctioning on the high-
way. Later, Chrysler recalled 1.4 million vehicles that can be
remotely hacked over the Internet [7].

Despite the CAN protocol’s widespread implementation and
high reliability, it remains vulnerable to intruders due to the
absence of basic security mechanisms as they introduce delays
in message transmission or increase bus traffic [8]. Although
there are a few works on implementing message authentication
code (MAC) on the CAN bus to authenticate the sender ECU
and prevent different attacks, they are costly and only achieve
limited cryptographic strength [9], [10]. Moreover, it is diffi-
cult to insert the MAC along with the CAN message because
of the limited payload length. As a result, only the plaintext
message is broadcast over the CAN bus. Hence, CAN proto-
col does not include a way to verify where the message comes
from or its integrity [8]. Due to this security deficiency, vehi-
cles using the CAN protocol remains insecure, and attackers
could, for instance, instigate sudden braking, or accelera-
tion, rendering the lives of passengers and pedestrians at
risk [6].

In response, an intrusion detection system (IDS) is usu-
ally regarded as the second (and most practical) line of
defense, given that an attacker can hack into the vehi-
cle’s internal communication. In general, there are two types
of vehicular IDSs—signature-based [11], [12] and anomaly-
based [13], [14]. A signature-based IDS typically formulates
detection rules based on the system’s normal behavior and
known attacks. Any violations of these rules are regarded
as anomalies. In CAN bus, these rules can be based on the
frequency of the messages, sequence of message IDs, inter-
frame time differences, signal values, etc. High-dimensional
CAN data flow, such as broadcasting different signals/IDs
at different frequencies, makes it difficult for the models to
extract the effective rules [15]. Moreover, due to the limita-
tions in the rules, these IDSs tend to show a high false-negative
rate in detecting advanced attacks and, thus, require frequent
updates of the known-attack database as they are only effec-
tive against known attack footprints [14]. Moreover, a clever
attacker can even keep the sequences of the malicious CAN
message benign by turning off the actual ECU through a
well-known bus-off attack [16], [17] and sending crafted mes-
sages simultaneously on behalf of the victim ECU. Although
a few of the works on ECU fingerprinting [18], [19] pro-
vided potential ways to verify the source of the CAN message
by analyzing the physical-layer attributes of the ECU and
detecting such impersonation attacks, the assumption of the
uniqueness of such physical properties is proven invalid by
a recent study [20]. Moreover, an attacker can also remotely
manipulate CAN messages at the data link layer, bypassing the
protocol’s rules and enabling stealthy link-layer attacks [21].
Some attacks are even possible due to the limitations in the
physical layer [22], such as different sample-point settings of
ECUs [23]. Therefore, only analyzing the sequence of the
CAN messages is not sufficient for the IDS. Rather, the only
effective way to detect advanced masquerade attacks, includ-
ing injection attacks, is to analyze the payload of the messages
and check for abnormalities within their contents.

The second category of CAN IDS analyzes anomalies in
the CAN data frame. The message IDs and the binary pay-
loads are the main sources of data utilized in such IDSs [24].
Despite the notable advancement in anomaly-based CAN IDS
research in recent years, it is still significantly hampered by
several factors [25]. First, CAN message in light-duty vehi-
cles are obfuscated by the original equipment manufacturers
(OEMs) for security and privacy reasons. Different vehicle
models encode their signals using different semantic rules,
even under the same OEM. Furthermore, in passenger vehicles,
a single payload usually contains several signals, even encoded
in different formats, along with some unused bits [26]. Due to
this semantic gap, the anomaly-based IDSs built directly on
such obfuscated complex binary CAN payloads tend to suffer
high false-positive rates and lack of explainability.

Besides, any machine learning (ML)-based IDS running on
raw payload data will have challenges if needing to scale with
the CAN FD (flexible data-rate) technology where the payload
field can be 512 bits long (instead of 64 bits) [27].

On the other hand, the conversion of high-dimensional
binary payload data to decimal signals has several bene-
fits [25]. First, it reduces the dimensionality of the data as
many bits are combined into a single physically meaningful
number. Further, it reduces the inherent noise of the binary
bits, which may seem patternless cryptic fluctuations in the
raw data but becomes meaningful if appropriately decoded.

Therefore, to achieve a more robust and semantically con-
cise defense against CAN intrusions, it is imperative to design
IDS schemes at the signal level, instead of only focusing
on the temporal/ID patterns and binary payload. Meanwhile,
there are very few concrete proposals for the signal-level CAN
IDS [15], [28], [29], [30]. Most of these considered individ-
ual deep learning models per CAN ID to track the associated
time-series signals, making them impractical for modern vehi-
cles with many CAN IDs. Moreover, as these IDSs have
attack-specific designs, they lack a comprehensive detection
performance against diverse types of attacks.

Thus, in this article, we propose a deep learning-based
intrusion detection framework, CANShield, which can handle
high-dimensional vehicular CAN bus data at the signal level
and detect advanced and stealthy attacks, including fabrication,
suspension, and masquerading attacks with high accuracy and
responsiveness. This framework working at the signal level
also adds transparency to the detection process.

We make the following contributions to this article.
1) We propose a deep learning-based intrusion detection

framework, CANShield, to detect advanced and stealthy
attacks from signal-level CAN data. It features a data
processing technique (pipeline) for the high-dimensional
CAN signal stream by creating a temporary data queue
and using the forward-filling mechanism to fill the miss-
ing data. This pipeline prepares the data stream suitable
for the training and testing in the ML-based IDS.

2) To make the detection effective on multidimensional
time-series data of different temporal scales, we convert
the 2-D data queues to multiple images and consider the
detection as a computer vision-like problem. We con-
sider multiple convolution neural network (CNN)-based

SHAHRIAR et al.: CANShield: DEEP-LEARNING-BASED INTRUSION DETECTION FRAMEWORK 22113

Fig. 1. (Top) CAN data frame syntax. (Bottom) An example of the decoded
signals that are encoded in the data field of four consecutive messages.

autoencoder (AE) models to learn the various tempo-
ral (short-term and long-term) and spatial (signal-wise)
dependencies. Violations in either the temporal or spa-
tial pattern can be detected during the reconstruction
process. Such data preprocessing avoids the need for
individual ML models per CAN ID.

3) We propose a three-step analysis of the structured
reconstruction loss of CANShield’s AE models on the
selection of detection thresholds for the optimal accu-
racy, followed by an ensemble-based detector that boosts
the overall detection performance by combining the
insights from all the AEs. We also utilized transfer learn-
ing to reduce the cost of training multiple AE and ensure
transferability.

4) We evaluate CANShield against advanced signal-level
attacks using SynCAN [15] and ROAD [25] data sets
and compare the results with a baseline model to show
the improvements. The results show high effectiveness
and responsiveness of CANShield against a wide range
of fabrication, masquerade, and suspension attacks on
the CAN bus. We also make the source code publicly
available.1

The remainder of this article is organized as follows. We
introduce necessary background information in Section II.
An overview of the proposed CANShield framework and
the attack model is presented in Section III. The technical
details are shown in Section IV. We provide an experimental
setup and implementation details in Section V. The evalua-
tion results are analyzed in Section VI. The related works are
discussed in Section VII. Finally, we conclude this article in
Section VIII.

II. PRELIMINARIES

A. Controller Area Network

Robert Bosch GmbH introduced CAN as an automotive
communication bus with the latest version (2.0) released in
1991 [31].

CAN Frame Format: A CAN message frame falls into four
types: 1) data frame; 2) remote frame; 3) error frame; and
4) overload frame, with data frame being the default mode for
data transmission. The top portion of Fig. 1 illustrates the data
frame format of CAN. CAN data frame supports up to 8 bytes
of payloads with 11 bits of arbitration ID (CAN ID), which can

1https://github.com/shahriar0651/canshield

be extended to 29 bits. Every ECU broadcasts its message to
the CAN bus. However, only one ECU can transmit at a time
and the rest stay synchronized to receive the data correctly. The
message arbitration mechanism detects and resolves collisions
of messages. A message with a higher priority contains a lower
binary-encoded CAN ID. When any ECU detects a higher
priority transmission during arbitration, it waits until the end
of that message, and the channel is available to use. Due to
different priorities, different CAN IDs usually appear in the
CAN bus at different frequencies.

Signal-Level Representation of CAN Data: The binary pay-
load can be decoded to the signal level using the specific car’s
database for CAN (DBC) file [32]. The DBC file is a pro-
prietary format, which is quite challenging to get. However,
any reverse engineering-based CAN decoder, such as the
CAN-D [26], can provide an approximate DBC file. Such
decoding converts the binary payloads to real-valued signals
and gives a time-series representation. We define the time of
each signal appearance as a one-time step. Thus, there is one
CAN message at each time step, which may contain one or
more associated signals along with some unused bits. The
lower part of Fig. 1 shows some samples of signal-level rep-
resentation of a few consecutive payloads. To prepare data
input to an ML-based detector, a straightforward idea is to
create a structured representation of such data stream, where
the columns indicate different signals and rows show each
time step. As such a data structure contains many missing
entries [15], it cannot be directly fed to the ML-based IDS
models. Thus, designing an appropriate data preprocessing
pipeline to account for the missing signal entries is one of
the critical challenges in building a signal-level CAN IDS, as
we will address in Section IV-B1.

B. Autoencoder

AE is an artificial neural network that can learn efficient
codings of input data through unsupervised learning [33]. It
consists of two parts: 1) an encoder that maps an input to a
lower dimensional code and 2) a decoder that reconstructs the
closest form of the input from that code. In the reconstruction
step, encoding parameters are refined so that the decoder can
recover the data while retaining only the most relevant fea-
tures. Hence, a bottleneck in the middle of the network can
determine the estimated states of the system in a lower dimen-
sion. Let us define the function of encoder and decoder as φ
and ψ that takes the input X and F , respectively, such that

φ :X → F , ψ :F → X
φ,ψ = arg min

φ,ψ

‖X − (ψ ◦ φ)X‖2.

In intrusion detection applications AE plays a vital role.
An AE network is first trained on the normal data so that it
learns how to reconstruct with minimum loss. The fundamen-
tal hypothesis of using AE is that intrusions are sufficiently
anomalous with respect to the underlying distribution of the
training data so that the AE will yield a high reconstruction
loss (‖X − (ψ ◦ φ)X‖), pointing to a high probability of
attack.

22114 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

C. Convolutional Neural Network

Convolutional neural network (CNN) is a class of deep neu-
ral networks mostly used to analyze image data sets [34].
The network uses small kernels or filters that slide along the
input data and map the complex relationship among the fea-
tures. CNNs can be considered the regularized versions of
multilayer perceptions and takes the advantage of the hierar-
chical data structure. Small filters help them learn the local and
straightforward patterns first and then combine them into more
complicated patterns. Therefore, CNN is an extremely power-
ful tool with a very low degree of connectivity and complexity.
We build the AE networks using CNN due to the observation
that each view is a 2-D data item, and CNN is widely proven
to work efficiently on 2-D data with minimum complexity.

D. Transfer Learning

Transfer learning refers to reusing a model trained for one
task as the starting point for another. The pretrained deep
learning models are often used as starting points for new
models if they are learning similar feature spaces and are
working on similar data sets. Therefore, transferring knowl-
edge saves time and cost during the training phase of deep
learning [35]. Transfer learning has two basic terms: 1) domain
and 2) task. A domain D = {X ,P(X)} consists of: a feature
space X and a marginal probability distribution P(X), where
X = {x1, . . . , xn} ∈ X . Given a specific domain, D, a task
T = {Y, f (x)} consists of two components: 1) a label space
Y and 2) a predictive function f :X → Y . The function f is
used to predict the corresponding label or a representation f (x)
of an instance x. This task is learned from the training data
consisting of pairs {xi, yi}, where xi ∈ X and yi ∈ Y .

Given a source domain DS and learning task TS, a target
domain DT and learning task TT , where DS �= DT , or TS �=
TT , transfer learning aims to help improve the learning of the
target predictive function fT(·) in DT using the knowledge in
DS and TS. Out of different ways, one of the most common
approaches is to initiate the weights of fT(·) using the trained
parameters of fS(·). The idea is that the basic structure and
knowledge saved in the source model is a good start for the
target model; hence, initializing fT(·) with the parameters of
fS(·) will reduce the initial cost. As in this work, we consider
the AE-based models, f (·) will have the function of an AE.

III. SYSTEM MODEL

A. CANShield Overview

The main component of CANShield is a software system
that can read a vehicle’s CAN messages in real-time. It is
loaded either on an onboard computing device connected to the
OBD-II Port (e.g., laptop and Raspberry Pi) or instantiated in
an existing ECU with a relatively powerful processor, such as
the gateway ECU. For the former case, the onboard computing
device includes a CAN protocol stack, allowing monitoring
and recording of the raw CAN messages. This can be achieved
with open-sourced implementations, such as Seeed CAN-BUS
Shield [36] and SocketCAN [37] or commercial CAN data
loggers, such as CANalyzer [38], and VehicleSpy [39], etc.

CANShield is preloaded with the vehicle’s DBC file, either
from OEM or CAN-D, allowing continuous decoding of the
binary payloads, creating a data queue of multidimension time-
series signals, and tracking their changes in near real-time.

As is shown in Fig. 2, CANShield contains three modules:
1) the data preprocessing module that creates multiple data
views of the same data queue of signal-level CAN data; 2) the
data analyzing module that employs multiple CNN-based AEs
for analyzing the data views and generating reconstruction
losses; and 3) the attack detection module that calculates
the anomaly scores and makes the final detection decision.
CANShield has two phases of operation: 1) training and
2) deployment. Some of the modules play additional/slightly
different roles during each of the two phases. During the train-
ing phase, the data analyzing module needs to train deep
learning models. However, as the onboard devices are typi-
cally lightweight and not suitable for effective training of the
deep learning models, we consider two potential solutions for
that. CANShield can have a secure connection to the cloud
with model training capabilities or train the models on a local
computer with CANShield running on that. Hence, during the
training phase, the normal CAN traces are stored on the local
memory first and then periodically sent to the cloud or local
computer for model training. As the AEs have the same tasks
(signal reconstruction) but work on slightly different domains
(data views), we utilize the transfer learning technique to trans-
fer the knowledge of one AE to the next one which is working
on a higher sampling period. Once all the models are ade-
quately trained, CANShield loads the trained models into the
onboard device and begins the deployment phase, which goes
through the three modules in a feedforward fashion and out-
puts the detection result in near real-time. It is noted that
CANShield detects attacks at the data queue level rather than
at the message level.

B. Attack Model

We assume that the intruder can access the CAN bus through
an exposed interface, such as V2X, infotainment, ADAS
systems, OBD-II port, etc. Moreover, we also assume that the
attacker is capable of turning off any ECU [16] and/or inject-
ing arbitrarily malicious messages. CANShield is designed to
protect the vehicles from the different levels of attacks in
a holistic manner. In particular, according to the attacker’s
objective, the attacks typically fall into the following three
categories.

1) Fabrication attacks, wherein a compromised ECU
injects malicious IDs and data to the CAN bus. However,
all the legitimate ECUs are still active and also send their
original data. This is the most prevalent and straightfor-
ward type of attack that is quick and easy to launch, as
the attacker does not need to hijack any ECU.

2) Suspension attacks, wherein a legitimate ECU is turned
off/incapacitated by the adversary. This attack is also
called suppress attack, where the messages from the
targeted ECU disappear for a while. To achieve this,
the attacker can disconnect the ECU from the in-vehicle
network to prevent it from communicating.

SHAHRIAR et al.: CANShield: DEEP-LEARNING-BASED INTRUSION DETECTION FRAMEWORK 22115

3) Masquerade attacks are the most advanced, stealthi-
est, and destructive attacks. This is the combination of
fabrication and suspension attacks, where the attacker
silences a legitimate ECU, and spoofs it in the continu-
ing operation while injecting malicious messages.

In evaluation, we will use a well-known CAN attack data
set, SynCAN [15] and an emergent realistic CAN data set,
ROAD [25] covering specific forms of the above attacks to
test the efficacy of CANShield.

C. Design Objectives

The design objectives of the CANShield are as follows.
1) Detecting Advanced Attacks: The foremost objective

of CANShield is to leverage established patterns and
correlations of various ECU/signal states during nor-
mal driving and design a single IDS that can detect
a variety of CAN message injection and manipulation
attacks considered in the literature to date, particularly
those advanced stealthy attacks that existing ID- or
payload-based IDSs have shown ineffective in detecting.

2) Near Real-Time Detection With Low False Positives
(FPs): The IDS should respond to intrusions accurately,
with low false-positive rates, and quickly, at the same
order of magnitude as the CAN message intervals, to
help the vehicle avoid catastrophes.

IV. CANSHIELD DETAILED DESIGN

This section elaborates on CANShield’s two initializing
tasks and three core modules in detail.

A. Critical Signal Selection and Clustering

As modern vehicles have hundreds of ECUs, they contain a
lot of CAN IDs and numerous associated signals. Securing all
of them with IDS comes with great implementation and com-
putation costs. On the other hand, securing only a handful
of important signals from the critical subsystem of the vehi-
cle, such as the power train, engine, coolant system, etc., will
reduce complexity and render feasible solutions for real-time
detection. A practical challenge arises in designing an effective
detection pipeline with a select group of signals. Accordingly,
we consider CANShield to keep track of only m preselected
high-priority signals. To find the shortlisted signals, we assume
that the defender has the semantic knowledge of the signals,
at least on the critical signals to secure. To make the detection
more effective and robust CANShield adds additional signals
based on the correlation coefficient, starting from the ones
with the highest correlation with the critical signals. However,
adding too many signals will increase the size of the input
image of the AEs, leading to an expensive and ineffective
system. Therefore, m is a design parameter and depends on
the defender. For the rest of this article, we will use the term
“signals” to indicate only the preselected m signals.

The order of the signals in the created 2-D input image
could also impact the learning efficacy. Compared to random
placement, placements that bring out stronger spatial (cor-
relations) patterns of the signals in the resulting image will

enable more effective learning. To facilitate the learning of
the intersensor correlations, CANShield calculates the Pearson
correlation matrix of the time-series signal data set [40].
Interpreting the correlation coefficient as the distance between
a pair of signals, CANShield utilizes a hierarchical agglomer-
ative clustering algorithm with complete linkage method [41]
to find compact clusters of highly correlated signals. Later,
we use the sequence of clustered signals to build the 2-D
images (queue) so that learning the signal-to-signal correlation
becomes effective for the small filters of the convolutional lay-
ers. Therefore, if one signal starts reporting abnormal values,
the CNN model will easily detect anomalies by comparing
them with the nearby highly correlated signals. More details
on the implementation are in Section VI-A. Notably, the two
tasks, signal selection, and correlation-based clustering are
done only once during the initialization of the training pro-
cess (i.e., off-line with recorded data) and are not parts of
the detection (deployment) pipeline. The following sections
elaborate on the three core modules of CANShield.

B. Data Preprocessing Module

The data preprocessing module prepares formatted 2-D
inputs to the AEs of the data analyzing module. It contains
the following two steps.

1) Creating and Maintaining Data Queue: First of all,
the data preprocessing module continuously records the CAN
trace and decodes the binary payloads containing the selected
m signals. Then, a first-in–first-out data queue Q is created
with the historical time-series signal data for the last q time
steps, where q is large enough for Q to encompass the tempo-
ral pattern of different signals. Thus, every new CAN message
is a new entry in Q, where the signal values only associated
with that incoming CAN ID are updated. For the rest sig-
nals, which are not updated by the new message, we adopt
a forward-filling technique, whereas, at every time step, the
missing/unreported signals are copied from the previous time
step. We assume that until an ECU sends a further CAN mes-
sage, its signals are still the same as the latest reported ones.
Thus, as time passes, the sensor data for the last q time steps
are always stored in Q.

2) Creating Multiple Views: To learn the various temporal
(short-term and long-term) patterns of different signals with
different reporting periods and identify abnormality, the data
analyzing module needs to train and deploy the AE networks
on different views (short-term and long-term) of the data queue
Q. As different CAN IDs have different reporting periods,
only the first w (<<q) messages or time steps (columns)
of Q may not be enough to represent the recognizable tem-
poral trend for all the signals, especially for the ones with
longer reporting cycles. On the other hand, considering a high
value for w (≈q) makes the input image too large. As a
result, the AE models become more complex. This challenge
boils down to how to effectively learn the temporal pattern
of all the signals, especially of the ones with long reporting
periods, while still using a small time window during image
generation.

22116 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

Fig. 2. CANShield workflow. CANShield has two phases of operation: “training” and “deployment.” CANShield contains three modules: i) the data
preprocessing module that creates multiple data views of the same data queue of signal-level CAN data, ii) the data analyzing module that employs multiple
CNN-based AEs for analyzing the data views and generating reconstruction losses, and iii) the attack detection module that calculates the anomaly scores and
makes the final detection decision.

Fig. 3. Generation of different views of Q with multiple samplings at time
step t. For the visualization, we have transposed the original image, where
the signals associated with each CAN ID are presented as a single row, and
the columns indicate the time steps. The changes in the colors indicate the
updates in the signal values associated with the CAN IDs. Thus, we select the
first w columns from Q at every T1, T2, . . . , Tn time steps, respectively. Here,
T1, T2, . . . , Tn are the sampling periods to create the views D1, D2, . . . , Dn,
respectively, of the same Q. Without the loss of generality, here we assume
T1 < T2 < · · · < Tn. Therefore, D1 has a more detailed view but contains a
very limited historical trend, capturing short-term, or fast-changing patterns.
On the other hand, Dn has most of the temporal trend, capturing long-term
or slow-changing patterns, but with the lowest details.

We achieve these two conflicting goals by creating n differ-
ent views of Q with n different sampling periods (seeing more
with a less complex model). Fig. 3 illustrates such sampling
process at time step t that uses sampling periods T1, T2, . . . ,Tn

to create the views D1, D2, . . . ,Dn, respectively, of the same
Q. The forward-filling mechanism helps to preserve the short-
term or fast-changing attributes in this long-term view. Despite
having different sampling periods, CANShield keeps the num-
ber of samples (w) within each data view the same. As there
are total m signals, each data view will have a dimension of
m×w. This allows CANShield to use the same architecture for
all the AE models working on each data view. The multiview
design has benefits in the system’s accuracy and scalability.
On the other hand, each of these views has different primary
targeted signals, but collectively they cover temporal trends
of variable lengths. This allows more effective and accurate
detection of abnormal signals, regardless of attacking message
frequency and duration.

C. Data Analyzing Module

The data analyzing module utilizes multiple AE models:

{AEi}i∈[n] (we define [n]
def= {1, 2, . . . , n}). Each of the models

is associated with each of the views of Q and thus learns differ-
ent (and complementary) perspectives of Q. We build the AE
networks using CNN due to the observation that each view is a
2-D data item, and CNN is widely proven to work efficiently
on 2-D data with minimum complexity. The motivation for
using AE is that, as there are neither explicitly defined states
of the vehicle, nor any analytical model for that, we use a data-
driven approach to find the states out of a small window of the
historical signal data. Thus, the data in an AE’s central (bottle-
neck) layer represents the vehicle’s state in a lower dimension.
In contrast, the decoder part tries to predict the vehicle’s his-
torical signal data by looking at the state’s information. If the
vehicle is running in a normal state, as mostly seen in the train-
ing data, the decoder should predict accurately. Otherwise, an
abnormal state will lead to an erroneous prediction, therefore,
a high reconstruction loss. Moreover, as our considered model
learns the relationship among all the signals, especially the
nearby highly correlated ones if at least one signal deviates
from the regular pattern, CANShield will recognize it from
the reconstruction loss.

As shown in Fig. 2, during the training phase, each AEx

takes a data view Dx ∈ R
m×w as an input image and learns

to reconstruct almost the same D̂x ∈ R
m×w image ∀x ∈ [n].

Meanwhile, as CANShield trains different AEs for different
views, the training cost would be linear to the number of
views. Thus, a practical challenge lies in how to reduce the
cost of training multiple AEs. As the views are created from
the same data queue Q, they contain inherent similarities in
their structure.

First, the spatial dependencies (correlations) along the fea-
tures are still almost the same, as all the signals in each of the
views are sampled with the same sampling periods. On the
other hand, the temporal patterns in different views are just
the expanded/shrunk versions. Hence, instead of training all
the models from scratch, we consider training the first model

SHAHRIAR et al.: CANShield: DEEP-LEARNING-BASED INTRUSION DETECTION FRAMEWORK 22117

AE1 thoroughly. Then, we use the transfer learning technique
to initialize the parameters of the next model, AE2, which only
needs to fine-tune the parameters instead of learning every-
thing from scratch. Thus, we initialize any tth model AEt with
the preceding trained model AEt−1. Such a technique reduces
the training cost (see Section VI-D), which will be most effec-
tive if, in the future, the model is trained in a peripheral device
like Raspberry Pi for a new vehicle.

Once the training is done, the deployment phase is initiated,
and the trained models are loaded in CANShield. At the end
of the training phase and during the deployment phase, the
AEs are tested on the corresponding data stream and try to
reconstruct the same image. For AEx, the absolute difference
between the original image and the reconstructed image is the
reconstruction loss Lx ∈ R

m×w is calculated as follows:

Lx = abs
(
Dx − D̂x

)
. (1)

Each element contains the corresponding signal’s reconstruc-
tion loss at a certain time step, where the row and columns
indicate the signal and time steps, respectively.

D. Thresholds Selection and Attack Detection Module

In this part, we discuss how to interpret a 2-D reconstruction
loss Lx into an anomaly score Px (i.e., attack probabil-
ity) for every data view Dx and use the results for attack
detection.

For a normal computer vision problem, the common prac-
tice would be to consider the mean value of all the elements
of the absolute reconstruction loss matrix L as the anomaly
score P

P← 1

m× w

m∑
i=1

w∑
j=1

Li,j. (2)

Compared to a normal computer vision problem, our input
image (and reconstruction loss Lx) has a concrete structure,
which gives space for tweaking the detection thresholds for
better accuracy. Thus, instead of taking the average value, we
exploit the structural knowledge of Lx to interpret the Px. We
define three types of thresholds for attack detection at each
AEx.

1) Signal-wise reconstruction loss thresholds RLoss
x ∈ R

m.
2) Signal-wise time step violation thresholds RTime

x ∈ R
m.

3) An overall signal violation threshold RSignal
x ∈ R.

Next, we demonstrate a three-step analysis on Lx to facili-
tate the selection of these thresholds and attack detection, as is
shown in Algorithms 1 and 2, respectively. For convenience,
we have obviated the AE index x for the thresholds and L as
this approach will be applied independently to each AE. We
also use three system hyperparameters p, q, r as confidence
percentiles for these thresholds, which is subject to optimal
tuning in practice (see Section VI-B1).

First, Algorithm 1 shows how we select the thresholds from
the 3-D reconstruction loss matrix L from randomly selected
t training data queues. First, we find the RLoss

i for every signal
i ∈ [m] on the normal training data by taking the pth percentile
values of elements in the i th rows of all the L (3). Later, we
map the 3-D matrix L to a binary 3-D matrix B to find the

Algorithm 1: Thresholds Selection for AEx

Input: Stack of reconstruction losses L ∈ R
t×m×w, system hyperparameters

p, q, r
Variables: B← 0t×m×w, V,S ← 0t×m,
Output: Thresholds: RLoss,RTime ∈ R

m,RSignal ∈ R

/* Step 1 */

∀i ∈ [m] : RLoss
i ← pth % ∀j, k ∈ [w], [t] Lk

i,j 3

∀i, j, k ∈ [m], [w], [t] : Bk
i,j ← 1 if Lk

i,j > RLoss
i 4

/* Step 2 */

∀i, k ∈ [m], [t] : Vk
i ←

w∑

j=1

Bk
i,j 5

∀i ∈ [m] : RTime
i ← qth % ∀k ∈ [t] Vk

i 6

/* Step 3 */

∀i, k ∈ [m], [t] : Sk
i ← 1 if Vk

i > RTime
i 7

∀k ∈ [t] : Pk ← 1

m

m∑

i=1

Sk
i 8

RSignal ← rth % ∀k ∈ [t] Pk 9

indices where the reconstruction losses are higher than the
allowed threshold RLoss

i for every ith signal (4). Second, we
find the total number of such time step violations Vi for each
signal by summing over all the w time steps (5) for all the t
instances. We evaluate the distribution of the signal-wise total
time step violations and consider the qth-percentile value as
the time step violation threshold RTime

i (6).
As the third step, we check if any specific signal has

more time step violations than RTime
i and flag that signals

as compromised (7) in each instance. Now, we have the list
of the violating signals S in each data view, and we con-
sider the average value of S as the anomaly score P for
the AE (8). Considering the false-positive requirement of the
system, we set rth percentile value of all Ps of the consid-
ered samples, as the total signal violation threshold RSignal (9).
After running all the steps, CANShield stores RLoss

x , RTime
x ,

and RSignal
x for each of the AEx, and consider the aver-

age of all RSignal
x s as the threshold RSignal

ens for the ensemble
model.

During the deployment phase, these thresholds are
preloaded from the memory and Algorithm 2 is used to detect
any violation. Although the tasks in (10)–(13) are simi-
lar as Algorithm 1, CANShield runs them on individual test
reconstruction loss L and check for potential threats using
the ensemble model. Here, an anomaly score is assigned
on each of the reconstruction losses on the data views,
i.e., P1, P2, · · · , Pn. CANShield then uses the ensemble
anomaly score Pens (14) as the final score. In the case of
Pens > RSignal

ens , the IDS tags Q as anomalous and raises the
alarm in the system (15). Compared to the mean absolute
value method (2), this three-step method gives CANShield
finer decomposition of L and improves the detection efficacy
against stealthy attacks. Fig. 4 shows a simplified visual-
ization of Algorithm 2 with a 5 × 5 reconstruction loss
matrix.

22118 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

Algorithm 2: Ensemble-Based Detection
Input: Reconstruction loss L ∈ R

m×w,
Thresholds: RLoss,RTime ∈ R

m,RSignal ∈ R

Variables: B← 0m×w, V,S ← 0m

Output: Attack decision: attack ∈ R

/* Step 1 */

∀i, j ∈ [m], [w] : Bi,j ← 1 if Li,j > RLoss
i 10

/* Step 2 */

∀i ∈ [m] : Vi ←
w∑

j=1

Bi,j 11

∀i ∈ [m] : Si ← 1 if Vi > RTime
i 12

/* Step 3 */

Px ← 1

m

m∑

i=1

Si 13

/* Ensemble */

Pens ← 1

n

n∑

x=1

Px 14

attack← 1 if Pens > R
Signal
ens 15

V. IMPLEMENTATION AND EVALUATION

A. Data Sets and Attacks

We implement CANShield on both the SynCAN data set
and ROAD data set. SynCAN data set [15] (Synthetic CAN
Bus Data) is a widely used CAN attack data set released by
ETAS (a subsidiary of Robert Bosch Gmbh) covering stealthy
signal-level CAN attacks. ROAD data set [25] was released
by Oak Ridge National Laboratory and is the most realistic
CAN attack data set to date.2 Next, we introduce the details
of each data set and the attacks covered.

1) SynCAN: The SynCAN data set is built on actual CAN
traces, emulating the characteristics of the real CAN traffic,
with hundreds of advanced attack scenarios. It contains a total
of 20 signals, including physical values, counters, and flags.
There are 24 h of logged data, of which 16.5 h are for training
and 7.5 h are for testing with five types of advanced attacks,
which resembles the three stealthy forms of attack models
mentioned in Sections III-B.

The attacks in SynCAN data sets are summarized in Table I.
In a flooding attack, the attacker frequently broadcasts high-
priority messages to delay the legitimate ECUs’ transmission
(similar as DoS attack). In a suppress attack, the attacker turns
off the corresponding ECU of the targeted signal(s) or prevents
it from sending further messages. Based on the time-series
nature of the injected data, there are three types of masquerade
attacks. In a plateau attack, the attacker broadcasts the same
constant value of any signal over a long period of time. The
impact of such an attack depends on the extent of the leap and
the duration of the attack. In a continuous attack, the signals
are overwritten with continuously changing values that shift

2To the best of our knowledge, the SynCAN data set (available at
https://github.com/etas/SynCAN) was the only publicly available signal-level
CAN data set with advanced attacks at the time of writing this article. ROAD
data set (available at https://0xsam.com/road/) was obfuscated and did not have
signal-level interpretation in its initial release in early 2021. We obtained the
raw ROAD data set by directly contacting ORNL. Partially motivated by our
work, ORNL has recently released a signal-level ROAD data set.

Fig. 4. Simplified visual illustration of three-step attack detection
(Algorithm 2) for individual AE with 5×5 reconstruction loss matrix. (a) 3-D
visualization of 2-D reconstruction loss matrix L showing the loss violations
(L > RLoss) in blue. (b) Binary 2-D matrix B showing the indices of loss
violation [top view of (a)]. (c) Signal-wise total loss violations V [counting
only the blue bars in (b)]. Orange colors show where V violates time-step
threshold RTime. (d) Binary 1-D array S showing if any signal violates RTime

[top view of (c)]. (e) Anomaly score/total signal violations P showing the
total number of time-step violating signals [counting only the orange bars in
(d)]. The red color shows if P exceeds the threshold RSignal, indicating a
potential attack; otherwise, the final prediction will be benign. For simplifica-
tion, we show the total counts in the bar plots instead of using the percentage,
which is used in the actual algorithm.

TABLE I
DESCRIPTION OF ATTACKS IN SYNCAN DATA SET

from the actual ones. Such small changes can initially look
realistic and bypass IDS. Finally, in a playback attack, the
attacker replays a series of previously recorded data for the
targeted signal to make it more realistic.

2) ROAD: The ROAD data set provides the highest-fidelity
CAN traces with physically verified most realistic CAN
attacks. It contains a significant amount of training data cov-
ering the different contexts of driving. We obtained the raw
ROAD data set and extracted signals from the CAN messages
using CAN-D. There are 3.5 h of logged data, of which 3 h
are for training and 30 min are for testing with five types of
advanced masquerade attacks targeting the engine coolant tem-
perature, engine RPM, brake light, and wheel speed sensors.
The injected message manipulates only the specific portion of
the data fields containing the targeted signals.

SHAHRIAR et al.: CANShield: DEEP-LEARNING-BASED INTRUSION DETECTION FRAMEWORK 22119

TABLE II
DESCRIPTION OF MASQUERADE ATTACKS IN ROAD DATA SET

Whereas the attacks in the SynCAN are created by post-
processing (replacing original ones) on the normal driving
data, the attack traces in the ROAD traces were collected from
a real vehicle under the real injection attacks. Such attack
traces provide not only the injected messages but also the
response from the vehicle under such attacks, which makes the
ROAD data set the most realistic one. The attacks in the ROAD
data set are summarized in Table II. In light of the model’s
complexity, one single IDS is not a feasible option to track all
the hundreds of decoded signals within the ROAD data set.
Thus, in the implementation of CANShield on the ROAD data
set, we consider seven primary signals, which were compro-
mised during the attacks, to be of primary importance and add
two highly correlated signals for each to make the IDS more
robust, as detailed in Section IV-A.

B. Evaluation Setup

1) CANShield Software Implementation: We use Python
3.7.3 with Keras 2.2.4 [42] for training and evaluation of
CANShield. The pipeline for the AE model contains the
combinations of the convolutional layer, activation layer
(LeakyRelu), max pooling, and up-sampling layers [34]. Using
min–max scaling, we keep the values of each signal between 0
and 1. We used a five-layer network, where the convolutional
layers have 3× 3 filters, and the numbers filters in each layer
are 32, 16, 16, 32, and 1. We utilized leakyRelu as the acti-
vation function with a parameter of 0.2, except for the output
layer, which has a sigmoid activation function. The decoder
part contains up-sampling layers with 2×2 filters. We use the
Adam optimizer with a learning rate of 0.0002 to train the
models and mean square error as the loss function. Using a
batch size of 128, we train each model for 100 epochs. The fol-
lowing section explains the impact of different parameters in
attack detection and illustrates the effectiveness of CANShield.

2) Evaluation Settings: To evaluate CANShield, we con-
sider w as 25, 50, and 100, and five sampling periods (Tx) as 1,
5, 10, 20, and 50 for each of the data sets. After training the AE
models, we select a random 10% of the samples from the train-
ing data and determine the reconstruction losses using (1) and
time step violations for each AE. We also study the compara-
tive analysis of the effectiveness of different sampling periods
against different attacks. We do an extensive grid search with
all the combinations of threshold ranging from 90% to 99.99%
as p, q, and r to find RLoss, and RTime, and RSignal, respectively,
as mentioned in (3), (6), and (9), to evaluate CANShield and
maximize detection performance. Moreover, we evaluate dif-
ferent detection scenarios by setting 0.1%, 0.5%, and 1% as
the maximum threshold for the FP rate (FPR) in the system.

With these settings, we evaluate CANShield’s performance
in the following three aspects.

Fig. 5. Attack detection and event detection latency in a single attack event.

Attack Detection: Any injection or modification of any CAN
message, as is described in the attack model in Section III-B, is
considered an attack. Attack detection is defined as the detec-
tion of any malicious data view. If any view of the data queue
contains one or more malicious injections, we consider the
label of the queue view as malicious.

Event Detection Latency: Depending on the type of attack,
there could be a delay between the first injected message and
the first correct detection during any attack event. Such a delay
is defined as the event detection latency. Fig. 5 shows the event
detection latency for a single attack event.

Hardware Processing Latency: We evaluate CANShield’s
performance by implementing it on a standard computer as
well as a lightweight edge device and benchmark the inference
time, showing the near real-time performance in hardware.

3) Evaluation Metrics: For any binary classifier, there are
four possible outcomes. True positive (TP), and true negative
(TN) are the outcomes where the model correctly predicts
the positive (attack) and negative (benign) classes, respec-
tively. An FP and false negative (FN) are the outcomes
where the model incorrectly predicts the positive classes
and negative classes, respectively. Based on these outcomes,
we evaluate CANShield’s performance using the following
metrics.

1) Precision is defined as the ratio between the correctly
predicted positive data views to a total number of
predicted positive views (TP/[TP + FP]).

2) Recall or TP Rate (TPR) is calculated as the ratio
between the number of positive views correctly clas-
sified as positive to the total number of actual positive
views (TP/[TP + FN]).

3) FPR is the proportion of negative views incorrectly
identified as positives (FP/[FP + TN]).

4) F1 Score is the harmonic mean of precision and recall
(2× ([Precision× Recall]/[Precision+ Recall]). For an
imbalanced data set, F1 score is mostly used to evaluate
the model’s performance.

5) ROC Curve, PR Curve, and AUC Scores indicate
the classifiers performance with varying discrimination
thresholds [43]. The ROC curve plots TPRs and FPRs,
and the PR curve plot precisions and recalls for differ-
ent thresholds. The area under the ROC and PR curves
are represented as AUROC and AUPRC, respectively,
which indicate the robustness of the detectors. An ideal
detector has both AUROC and AUPRC scores of 1.00.

4) Baseline Models: We consider CANShield with only
one AE with sampling periods Tx as CANShield-Tx and
the full-fledged multi-AE-based CANShield as CANShield-
Ensemble (or CANShield-Ens).

22120 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

Fig. 6. Hierarchical clustering of the signals in SynCAN data set based on the correlation matrix and rearranging them in clusters.

This part describes the four baseline models that we con-
sider for the performance comparison.

1) CANShield-Base: We consider CANShield-Base, a sim-
plified version of CANShield to represent the existing
approaches in CNN-AE-based IDS working on windows
of multidimensional time-series data [44]. We consider
CANShield-Base to have only one AE working with a
sampling period of 1 using the conventional one-step
mean absolute value of reconstruction loss (as (2)) to
calculate the anomaly score. Hence, the performance
comparison between CANShield-Ens and CANShield-
Base justifies the significance of multiple AEs and a
three-step analysis of reconstruction losses.

2) CANet: CANet [15] is the IDS specifically designed
for high-dimensional CAN data structure, employing
one long short-term memory (LSTM) model for each
CAN IDS and merging their output to create a fully
connected AE network. The authors evaluated CANet
on the SynCAN data set and made the data set pub-
lic [45]. As we are also utilizing the SynCAN data
set, CANet becomes the most relevant baseline for
CANShield-Ens.

3) Reconstructive: The fundamental approach of the
reconstructive baseline is similar to CANShield-
Base. Whereas CANShield-Base feeds all the signals
in one single AE model, reconstructive baseline
uses different AE models for different signals [46].
Therefore, although it can learn the temporal dynam-
ics, there is no way to learn the signal-wise
correlations.

4) Predictive: In the predictive baseline, there are individ-
ual LSTM models for each CAN ID that predicts the
signals associated with the CAN ID for the next time-
step [47]. Hence, whereas all the reconstruction-based
methods, including CANShield and CANet, rely on the
reconstruction of the input that contains the past and cur-
rent values, the predictive baseline forecasts the future
values from the given input and compares them with the
reported ones.

VI. EVALUATION RESULTS AND DISCUSSION

This section, first, explains why correlation-based cluster-
ing is effective for CANShield; and later shows CANShield’s
performance on the different aspects.

A. Correlation-Based Clustering

As discussed in Section IV-A, in the initialization of the
training phase, CANShield analyzes the Pearson correlations
matrix of the data set to create clusters of signals and rear-
range them so that highly correlated signals stay together in
the data queue Q. The left panel of Fig. 6 shows the heat
map of the correlation matrix of the SynCAN data set, with
the original orders of the signals as appeared in the data set.
It is clear from the figure that some of the highly corre-
lated signal pairs, for example, S:1_ID:02, and S:1_ID:07,
have a correlation of around unity but originally, they are
placed far apart. Such placement makes it harder for the small
CNN filters to learn their dependencies. The middle panel of
Fig. 6 shows the dendrograms after correlation-based cluster-
ing, which also indicates the existence of multiple clusters of
highly correlated signals. For example, in the SynCAN data
set, S:1_ID:10 and S:1_ID:09 form a cluster of two signals,
and S:2_ID:03, S:1_ID:07, and S:1_ID:02 form another clus-
ter. The right panel of the figure shows the heat map of the
correlation matrix after the signal reordering. Therefore, such
grouping and reordering make data queue Q generation more
interpretable and effective.

B. Attack Detection

1) Optimizing Design Hyperparameters: We first show
how we optimize CANShield’s system hyperparameters to
achieve the best performance on the SynCAN data set. We
assess the contribution of each feature of CANShield in attack
detection in the three following steps.

Effectiveness of Three-Step Analysis: As the first version of
CANShield, we consider CANShield-1, which uses only one
AE working on a sampling period of 1 and a data view length
of 50. Thus, the three-step analysis of reconstruction loss is the
only difference between CANShield-1 and CANShield-Base.
Hence, we demonstrate the efficacy of the three-step analy-
sis of reconstruction loss (in CANShield-1) over the mean
absolute loss (in CANShield-Base) by selecting different val-
ues for thresholds RLoss, RTime, and RSignal, respectively. The
captions in Fig. 7 show the AUROC score of CANShield-
Base for each attack type, while different pixels indicate
the improvements in the AUROC scores of CANShield-1
over CANShield-Base for different combinations of RLoss

and RTime.

SHAHRIAR et al.: CANShield: DEEP-LEARNING-BASED INTRUSION DETECTION FRAMEWORK 22121

Fig. 7. Effectiveness of three-step loss analysis in CANShield over the
mean absolute loss in CANShield-Base. The values within the [] show the
AUROC scores of CANShield-Base, whereas the colors of the pixels show
the improvements in the AUROC scores for different RLoss and RTime.

Fig. 8. Anomaly scores of CANShield with different sampling periods on
malicious samples. Higher anomaly scores on malicious samples make the
IDS more effective.

The figure shows whereas the proposed three-step analy-
sis has limited contributions on the flooding and suppress
attacks (first two panels), it provides a better representation
of violations and improves the detection performance of the
stealthy masquerade attacks (last three panels) compared to
CANShield-Base. As the violations in the fabrication and
suspension attacks are more evident and do not involve any
modification of signals, mean absolute loss itself suffices to
give a decent detection performance (AUROC scores of 0.958,
and 0.877, respectively). However, setting RLoss and RTime to
95-percentile and 99-percentile, respectively, helps better ana-
lyze the nuanced violations created by the masquerade attacks
and provides the improvements (0.02–0.03 in AUROC scores)
over CANShield-Base. This evaluation shows adding a three-
step analysis improves the detection rate even when one AE is
used. In the following paragraphs, we will discuss how adding
more AEs, and combining them into an ensemble detector,
CANShield-Ens further improves the detection performance.

Effectiveness of Different Sampling Periods: Here, we
demonstrate the effectiveness of learning from multiple views
with multiple AEs working with different sampling periods
in detecting attacks. Fig. 8 illustrates the performance com-
parison of CANShield-Tx, where Tx ∈ {1, 5, 10, 20, 50}. We
analyze the effectiveness of CANShield-Tx by plotting the dis-
tributions of anomaly scores of the malicious data queues. As
the anomaly scores on the benign data queues are mostly zeros,
we only show the anomaly scores on malicious data queues.
The first two panels of the figure show that for both flood-
ing and suppress attacks, the anomaly scores of the malicious
data queues increase for higher sampling periods, making the
detection easier as these attacks are more detectable looking
at the long-term sequential pattern. As higher anomaly scores
on malicious data queues make the classification task eas-
ier, it increases the TPR while lowering the FPR. Therefore,
AE working on a higher sampling period (≥ 5) is the most
effective against fabrication and suspension attacks.

On the other hand, a sampling period of 5 seems to be the
most suitable choice against plateau attacks, and a sampling

Fig. 9. Optimizing CANShield-Ens’s architecture. Best AUROC score for
different window size w ({25, 50, 100}) and AEs.

period of 1 is the best performing one against the continuous,
and playback attacks. Hence, unlike fabrication and suspen-
sion attacks, the lower sampling periods (≤ 5) are, in general,
the most effective ones against the masquerades attacks as
short-term views of the data queue provide a detailed look at
the time-series abnormalities. Therefore, only one AE work-
ing on only one type of data representation is not enough
to detect diverse attacks. This finding motivates the design
of CANShield-Ens, combining multiple AEs into a single
decision model to further increase the robustness of the IDS.

Effectiveness of Ensemble Model: To design the final ensem-
ble model, we studied different combinations of AEs working
with different sizes of data views. Here, we consider the stan-
dard ensemble technique of averaging multiple anomaly scores
to a single score (attack probability) as mentioned in (14) and
use that to evaluate the detection performance.

To search for the final ensemble model, we studied differ-
ent window sizes and different combinations of AEs, starting
from one AEs up to five AEs. As Fig. 9 shows, CANShield
with only one AE has limited performance (AUROC score
< 0.93) regardless of the window size w. When more AEs
are ensembled, the performance improves. Although w = 25
shows promising performance, it still underperforms that of
w = 50 even having more AEs. Besides, we observe that
w = 100 tends to make the model overly complicated and
yield performance degradation. From the figure, it is evident
that, on average, CANShield-Ens performs the best on the
SynCAN data set when w = 50 and there are three AEs work-
ing. We further find that out of various combinations of three
sampling periods, the ensemble of 1, 5, and 10 gives the best
performance.

We note that although the above results are derived from
the SynCAN data set, the ROAD data set also shows a similar
result. Therefore, for the simplicity of the analysis, we use w as
50, three AEs (with sampling periods 1, 5, and 10), and RLoss
and RTime as 95th-percentile and 99th-percentile, respectively,
for both the SynCAN and ROAD data sets in the following
evaluations.

2) Attack Visualization and AUROC Scores: In this part, we
visualize the anomaly scores for all the individual and ensem-
ble detectors along with the ROC curves for both SynCAN
and ROAD data sets.

SynCAN Data Set: Fig. 10(a) shows the CANShield’s
anomaly scores, and the left panel of Table III summarizes
AUROC scores for different attacks on the SynCAN data
set. Different AEs (CANShield-Tx) show different perfor-
mances on each of the attacks. However, the CANShield-Ens
yields more stable and consistent performance, leading to

22122 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT CANSHIELD ARCHITECTURES AND BASELINE DETECTORS ON SYNCAN DATA SET

Fig. 10. Attack visualization with different models for both data sets.
(a) SynCAN data set. (b) ROAD data set.

higher AUROC scores in all the attacks than the individual
CANShield-Tx. In the case of continuous and playback attacks,
the signals start to deviate gradually from the original values,
which takes some time to create the recognizable deviation
for the IDS. Hence, a lower AUROC score in the CANShield-
Ens is not unexpected, especially against continuous attacks.
However, CANShield-Ens can detect the violations almost
instantly for the rest of the attacks (AUROC scores of
0.95−1.00). Whereas the individual AEs are attack-specific,
the ensemble model takes the best out of every model, gener-
alizes the process, and detects most attacks with the highest
AUROC scores.

ROAD Data Set: Fig. 10(b) shows the anomaly scores of
the attacks on the ROAD data set. Same as the SynCAN,
CANShield-Ens also shows stable performance in the anomaly
score. As all the attacks in the ROAD data set are closely
aligned with the plateau attack in the SynCAN data set, both

the individual and ensemble models show high performance
in detecting the attacks. There are a few cases where the
performance degrades a little bit, but CANShield-Ens miti-
gates such issues and detects all the attacks on the ROAD
data set with an AUROC score of ∼1.00.

3) Precision, Recall, and F1 Score: In this part, we study
the impact of the signal violation thresholds RSignal on
CANShield-Ens’s precision, recall, and F1 score for dif-
ferent attacks in both the SynCAN and ROAD data set.
The first panel of Fig. 11(a), which shows the PR curve
along with the AUPRC scores on the SynCAN data set,
demonstrates that CANShield-Ens is highly effective against
fabrication and suspension attacks (AUPRC ≥0.92) and
moderate performance against advanced masquerade attacks
(AUPRC≈ 0.65−0.88). Moreover, the values of RSignal within
the range of 0.05 to 0.2 provide a decent performance maxi-
mizing the F1 scores for different attacks, as shown in the right
panel of the figure. Considering CANShield’s goal of having
a low FPR, we recommend a higher value for RSignal, which
results in high precision (>0.9) for all the attacks. Similarly,
the evaluation results in Fig. 11(b) on the ROAD data set
show that CANShield-Ens achieves perfect precision, recall,
and F1 score (AUPRC≈1.00) with an appropriate threshold
(0.2− 0.3).

Comparison With Baseline Models: Whereas we demon-
strate the improvements of CANShield-Ens over the individual
models, this part includes the performance comparison with
the other baseline detectors as well. Table III illustrates such
comparison, which indicates 1.84% and 11.67% improve-
ments in the AUROC of flooding and suppress attacks,
respectively, compared to the closest baseline CANet. Unlike
CANet, CANShield-Ens considers both the sequence of CAN
IDs and the time-series signal values to create the data
queue and provides effective detection of such practical
attacks. Even though CANet performs slightly better against
advanced masquerade attacks, CANShield-Ens also shows
decent performance. The right panel of Table III shows the
TPR and FPR of different CANShield architectures along
with the baselines. Similar to the AUROC, CANShield shows
promising performance against fabrication and suspension
attacks, while CANet performs better against masquerade
attacks. Furthermore, CANShield is considerably lighter than
CANet. While CANet consumes 8718 kB of memory [28],
CANShield only utilizes 525 kB, making it suitable for edge
devices. Overall, as Table III shows, CANShield-Ens outper-
forms all of the baselines on average, showing the proposed
framework’s effectiveness.

SHAHRIAR et al.: CANShield: DEEP-LEARNING-BASED INTRUSION DETECTION FRAMEWORK 22123

(a) (b)

Fig. 11. CANShield-Ens’s precision-recall (PR) curve with AUPRC and F1 Scores for different thresholds on both the (a) SynCAN and (b) ROAD data sets.

Fig. 12. Tradeoff between event detection latencies and maximum FPR thresholds against different attacks in the SynCAN data set.

C. Event Detection Latency

Fig. 12 illustrates the attack-wise event detection latency for
three cases of maximally allowed FPR for the SynCAN data
set. As each attack manipulates the signal at different paces,
the time to observe a potential deviation varies. Hence, similar
to the previous discussion, certain AEs are more responsive
against certain types of attacks. As the first two panels of
Fig. 12 show that in the case of fabrication and suspen-
sion attacks, CANShield-1 has slightly higher event detection
latency, whereas CANShield-Ens reduces the detection latency
for the ensemble model. On the other hand, the masquerade
attacks are the most challenging to detect, and CANShield-
Ens reduces the FPs by taking the mean of the final anomaly
scores. Therefore, as a tradeoff, it increases the latency by a
small factor compared to the individual models. However, the
latency is still within a small range to cause any devastating
impact. It is noted again that in the SynCAN data set, the
attacks were created in post-processing without any physical
verification. Hence, some attacks may align with the actual
data and lose the malicious property leading to low-detection
performance and high-detection latency.

Furthermore, the figures also illustrate the impact of max-
imum FPR on the event detection latency. Although some
individual model suffers from high latency with low FPR
(i.e., 0.1%), CANShield-Ens provides a lower event detection
latency. However, allowing more FPs (max FPR of 0.5%−1%)
into the system further reduces latency. Whereas in case some
advanced SynCAN attacks CANShield takes up to a couple
of seconds to detect, all the attack events in the ROAD data
set are detected almost instantly [see Fig. 10(b)]. Therefore,
our evaluation shows that CANShield improves detection
performance, reduces overall detection latency, and makes the
system more robust.

D. Implementation and Processing Latency

Transfer Learning: Here, we explain the computational ben-
efit of transferring knowledge from the trained AE models
working on lower Tx to AEs with higher Tx. Fig. 13(a) shows

(a) (b)

Fig. 13. Effectiveness of transfer learning during model training. (a) Cost
of training. (b) Validation loss after training.

that without any knowledge transfer, the number of training
epochs to reach the early stopping criteria, which is a steady
validation loss, increases by up to 100% of the initial training
for different AEs. However, if the AE model’s parameters are
initialized as the pretrained AE with the immediate lower Tx,
the number of training epochs gets reduced by approximately
30% in most cases. Besides, as Fig. 13(b) shows, such initial-
ization does not impact the performance of the final models
as the validation loss of the final AE models remains almost
the same regardless of the weight initialization. Therefore,
CANShield-Ens reduces the training cost of consecutive AEs
significantly by transferring the weights to the next AE without
any performance tradeoff.

Hardware Processing Latency: We trained and evaluated
CANShield on a laptop with a 2.3 GHz 8-Core Intel i9 proces-
sor with 32 GB of RAM and AMD Radeon Pro 5500M 8 GB
of graphics and also deployed on a Raspberry Pi with 1.5 GHz
64-bit quad-core CPU and 4 GB of RAM to benchmark
CANShield prediction speed. To reduce the inference time and
the size of AE models, we convert the TensorFlow model into
TensorFlow Lite [48] models, which quantizes the weights.
Results show each CANShield process takes around 1 ms on
the laptop, which satisfies our design objective (<2 ms), and
10 ms on the Raspberry Pi, which is low for an attack to

22124 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

cause catastrophe to the targeted vehicle. Our extensive test-
ing and validation demonstrate that the quantized AE-based
CANShield provides no degradation in performance and yields
the same detection results as the original ones.

E. Limitations and Discussions

Here, we discuss two key challenges of CANShield, which
are common for any DL-based signal-level CAN IDS.

1) The first challenge is to get the DBC files from the OEM
or have an efficient reverse engineering tool to create the
signal-level representation of the CAN data set. Hence,
we assume that the defender is OEM who has direct
access to the DBC file or a third party with an efficient
reverse engineering tool.

2) The collection of sufficient training data and generaliz-
ing the training of the AE models is another challenge.
To overcome these issues, CANShield is assumed to
be trained on a very dynamic high-fidelity data set,
including a diverse range of driving patterns and various
driving scenarios, to ensure that it can detect anomalies
regardless of the driving context and driver’s behavior.

VII. RELATED WORK

There has been a good amount of work on CAN IDS, which
can be divided into the following general categories.

Physical Characteristics-Based IDS: One line of research in
CAN IDS utilized the physical layer attributes of the CAN bus
communications to fingerprint the ECUs and verify the source
of each message. Since the physical signals generated from the
ECUs solely depend on the ECUs’ hardware characteristics,
it is assumed to be unique; hence, a malicious ECU cannot
controllably modify it. Therefore, such defense has been con-
sidered effective in detecting injection attacks. Out of different
attributes, clock skews [19], voltage profile [49], [50], electri-
cal CAN signal characteristics [18], [51], etc., are widely used
in fingerprinting and building physical characteristics-based
IDS. However, the assumption of the uniqueness of such phys-
ical properties is proven invalid by a recent study [20], which
proposed a voltage corruption tactic that can modify the phys-
ical attributes of the victim ECU and impersonate the targeted
ECU. Therefore, such IDSs cannot provide a comprehensive
security guarantee against a wide range of cyberattacks.

CAN ID-Based IDS: A vast portion of the attacks, especially
fabrication and suspension attacks, consider exploiting the
sequences of CAN IDs to disrupt regular services. Therefore,
some IDSs extract features from the series of CAN IDs to
learn the usual pattern and detect abnormalities. Given the
labeled data sets, some works utilized different types of super-
vised learning models, based on CNN [52], [53], LSTM [54],
support vector machine, k-nearest neighbors, decision tree,
random forest, and XGBoost [55], [56], [57] etc., to build the
IDSs. Different unsupervised ML algorithms are also stud-
ied in CAN ID-based IDS research. Various features, such
as message timing information per CAN ID and window-
wise ID-counting, are used as the underlying features for the
IDSs [58].

A few works predicted the next CAN ID with individ-
ual LSTM or gated recurrent unit (GRU) models and used
log loss and a predefined threshold to detect malicious
injections [59]. Similarly, one-class support vector machine
(OCSVM) [60], isolation forest [61] are also studied. Along
with unsupervised methods, self-supervised method-based IDS
are also studied [62]. A few works converted the sequences
of CAN IDs into 2-D images and trained generative adversar-
ial networks (GANs) in an unsupervised fashion [63], [64].
Recently, motivated by natural language processing, some
researchers considered the sequence of CAN IDs as a sen-
tence and utilized world embedding and language models to
build the CAN IDS [65], [66]. The fundamental drawback of
the CAN ID-based IDSs is that they are only effective against
injection attacks that explicitly change the sequence of IDs.
However, advanced masquerade attacks can manipulate the
payload without disrupting the ID sequences/frequencies and
easily evade such IDSs [6].

Payload-Based Detection: The advanced attacks can not
only change the CAN IDs but also modify the payloads of
the messages. The attacker can replay prerecorded values or
change the actual values. Hence, there has been a good amount
of work learning the pattern in the payload sequences and
using it to detect potential cyberattacks. Extracting usable fea-
tures from the binary payloads is a challenging task. The mode
and value information is commonly used to extract features
and implement DNN-based IDS [67]. A few works proposed
a continuous field classification (CFC) algorithm to identify
the payload value alignments and used a deep learning-based
approach to identify the anomalous fields [68]. Moreover,
different k-nearest neighbor classifiers are also used to iden-
tify different attacks [69]. Considering the sequence of CAN
messages as time-series data, a few works implemented unsu-
pervised ML models based on LSTM [70], [71] and OCSVM
to build the payload-based CAN IDS [72].

Signal-Level Detection: Compared to the IDSs mentioned
above, IDSs working at the time-series signal level can extract
the most useful information and build an efficient and context-
aware decision model. Moriano et al. [30] hypothesized that
masquerade attacks alter the correlations among the signals
and the clustering behaviors and proposed a technique to detect
such attacks by comparing the clustering similarity of test
data with and without attack traces. Recent works proposed
DNN-based signal-level CAN IDS, where the extracted sen-
sor values are used as separate features for IDS [73]. Other
research efforts also proposed the RNN/LSTM-based models
with an embedding layer working on CAN payload values
in [47], [74], and [75]. A few similar approaches in CAN IDS
research used GRU, LSTM, and temporal CNN-based AEs
for each CAN ID [28], [29], [74], [75], [76], [77]. All of
these IDSs [28], [29], [74], [75], [76], [77] processed ID-wise
data independently and utilized individual models for each ID,
which ignored the signal-wise correlations and fail to detect
attack collectively.

CANet [15] is one of the closest works to our proposed
method. It employed one LSTM model for the signals with
each CAN ID and used AE-based reconstruction to predict
the anomaly score. However, in practice, LSTM networks are

SHAHRIAR et al.: CANShield: DEEP-LEARNING-BASED INTRUSION DETECTION FRAMEWORK 22125

costly to train, and one LSTM for each IDS will make it
impractical for a vehicle with many CAN IDs. Moreover, due
to the complicated architecture, CANet shows low-detection
performance on suppress attacks, a form of the well-known
bus-off attack that can be easily launched due to the CAN pro-
tocol’s limitations. Novikova et al. [78] proposed to manually
group the highly correlated signals into smaller subgroups and
use AE for each subgroup. However, such manual clustering
is not feasible for real vehicles with lots of signals.

VIII. CONCLUSION

As modern vehicles become more connected to external
networks, the attack surface of the CAN bus system grows
drastically. To secure the CAN bus from advanced intrusion
attacks, we propose a signal-level intrusion detection frame-
work, CANShield. With the capability of handling a high-
dimensional CAN data stream, CANShield trains multiple
CNN-based AE models to work on different views of the
data stream across different temporal scales, performs a three-
step structural analysis of the reconstruction losses, and finally
ensembles them to obtain the final anomaly score. Evaluation
results on both the SynCAN and ROAD data sets show
CANShield’s robustness and responsiveness against different
advanced attacks. The proposed three-step analysis of the
reconstruction loss improves the overall AUROC by 6.40%
than the conventional mean average method. The aggregation
of data with different temporal scales reduces variance in infer-
ence and increases the AUROC by at least 2.19% compared to
any single AE-based framework. Moreover, CANShield out-
performs all the baselines against practical fabrication and sus-
pension attacks while still performing well against advanced
masquerade attacks. By combining the strengths of CAN ID-
based IDS and signal-level IDS, CANShield offers a scalable
and efficient solution and advances the state-of-the-art.

ACKNOWLEDGMENT

The authors are thankful to Robert A. Bridges from ORNL
for his insightful comments on this article. This manuscript
has been coauthored by UT-Battelle, LLC, under Contract
DE-AC05-00OR22725 with the U.S. Department of Energy
(DOE). The U.S. Government retains and the publisher, by
accepting the article for publication, acknowledges that the
U.S. Government retains a nonexclusive, paid-up, irrevoca-
ble, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for U.S.
Government purposes. DOE will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

REFERENCES

[1] Z. El-Rewini, K. Sadatsharan, D. F. Selvaraj, S. J. Plathottam, and
P. Ranganathan, “Cybersecurity challenges in vehicular communica-
tions,” Veh. Commun., vol. 23, Jun. 2020, Art. no. 100214.

[2] C. E. Andrade et al., “Managing massive firmware-over-the-air
updates for connected cars in cellular networks,” in Proc. 2nd ACM
Int. Workshop Smart, Auton., Connected Veh. Syst. Services, 2017,
pp. 65–72.

[3] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, S. Garg, and
M. M. Hassan, “BDTwin: An integrated framework for enhancing secu-
rity and privacy in cybertwin-driven automotive Industrial Internet of
Things,” IEEE Internet Things J., vol. 9, no. 18, pp. 17110–17119,
Sep. 2022.

[4] K. Koscher et al., “Experimental security analysis of a modern automo-
bile,” in Proc. IEEE Symp. Security Privacy, 2010, pp. 447–462.

[5] S. Woo, H. J. Jo, and D. H. Lee, “A practical wireless attack on the
connected car and security protocol for in-vehicle CAN,” IEEE Trans.
Intell. Transp. Syst., vol. 16, no. 2, pp. 993–1006, Apr. 2015.

[6] C. Miller, “Lessons learned from hacking a car,” IEEE Design Test,
vol. 36, no. 6, pp. 7–9, Dec. 2019.

[7] G. David. “Chrysler recalls 1.4 million hackable cars.” Accessed:
Jun. 21, 2021. [Online]. Available: http://cnnmon.ie/1OrrqGv

[8] H. J. Jo and W. Choi, “A survey of attacks on controller area networks
and corresponding countermeasures,” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 7, pp. 6123–6141, Jul. 2022.

[9] Y. Xiao, S. Shi, N. Zhang, W. Lou, and Y. T. Hou, “Session key distri-
bution made practical for can and CAN-FD message authentication,” in
Proc. Annu. Comput. Security Appl. Conf., 2020, pp. 681–693.

[10] J. Schmandt, A. T. Sherman, and N. Banerjee, “Mini-MAC: Raising
the bar for vehicular security with a lightweight message authentication
protocol,” Veh. Commun., vol. 9, pp. 188–196, Jul. 2017.

[11] S. Jin, J.-G. Chung, and Y. Xu, “Signature-based intrusion detection
system (IDS) for in-vehicle CAN bus network,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), 2021, pp. 1–5.

[12] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “SAIDuCANT:
Specification-based automotive intrusion detection using controller area
network (CAN) timing,” IEEE Trans. Veh. Technol., vol. 69, no. 2,
pp. 1484–1494, Feb. 2020.

[13] S. Halder, M. Conti, and S. K. Das, “COIDS: A clock offset based
intrusion detection system for controller area networks,” in Proc. 21st
Int. Conf. Distrib. Comput. Netw., 2020, pp. 1–10.

[14] W. Wu et al., “A survey of intrusion detection for in-vehicle
networks,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 3, pp. 919–933,
Mar. 2020.

[15] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANET: An
unsupervised intrusion detection system for high dimensional CAN bus
data,” IEEE Access, vol. 8, pp. 58194–58205, 2020.

[16] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2016, pp. 1044–1055.

[17] G. Bloom, “WeepingCAN: A stealthy CAN bus-off attack,” in Proc.
Workshop Autom. Auton. Veh. Security, 2021, pp. 1–6.

[18] W. Choi, H. J. Jo, S. Woo, J. Y. Chun, J. Park, and D. H. Lee,
“Identifying ECUs using inimitable characteristics of signals in con-
troller area networks,” IEEE Trans. Veh. Technol., vol. 67, no. 6,
pp. 4757–4770, Jun. 2018.

[19] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for
vehicle intrusion detection,” in Proc. 25th USENIX Security Symp., 2016,
pp. 911–927.

[20] R. Bhatia, V. Kumar, K. Serag, Z. B. Celik, M. Payer, and D. Xu,
“Evading voltage-based intrusion detection on automotive CAN,” in
Proc. NDSS, 2021, pp. 1–17.

[21] A. de Faveri Tron, S. Longari, M. Carminati, M. Polino, and S. Zanero,
“CANFlict: Exploiting peripheral conflicts for data-link layer attacks on
automotive networks,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2022, pp. 711–723.

[22] A. Z. Mohammed, Y. Man, R. Gerdes, M. Li, and Z. B. Celik, “Physical
layer data manipulation attacks on the CAN bus,” in Proc. Int. Workshop
Autom. Auton. Veh. Security (AutoSec), 2022, pp. 1–5.

[23] L. Yue, Z. Li, T. Yin, and C. Zhang, “CANCloak: Deceiving two
ECUs with one frame,” in Proc. Workshop Autom. Auton. Veh. Security
(AutoSec), 2021, pp. 1–6.

[24] S.-F. Lokman, A. T. Othman, and M.-H. Abu-Bakar, “Intrusion detec-
tion system for automotive controller area network (CAN) bus system:
A review,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1,
pp. 1–17, 2019.

[25] M. E. Verma et al., “Addressing the lack of comparability & testing in
can intrusion detection research: A comprehensive guide to CAN IDS
data & introduction of the road dataset, 2022, arXiv:2012.14600.

[26] M. E. Verma, R. A. Bridges, J. J. Sosnowski, S. C. Hollifield, and
M. D. Iannacone, “CAN-D: A modular four-step pipeline for com-
prehensively decoding controller area network data,” IEEE Trans. Veh.
Technol., vol. 70, no. 10, pp. 9685–9700, Oct. 2021.

22126 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 24, 15 DECEMBER 2023

[27] J. W. Shin, J. H. Oh, S. M. Lee, and S. E. Lee, “Can FD controller
for in-vehicle system,” in Proc. Int. SoC Design Conf. (ISOCC), 2016,
pp. 227–228.

[28] V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “INDRA: Intrusion
detection using recurrent autoencoders in automotive embedded
systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 39, no. 11, pp. 3698–3710, Nov. 2020.

[29] V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “LATTE: LSTM
self-attention based anomaly detection in embedded automotive plat-
forms,” ACM Trans. Embedded Comput. Syst., vol. 20, no. 5S, pp. 1–23,
2021.

[30] P. Moriano, R. A. Bridges, and M. D. Iannacone, “Detecting can mas-
querade attacks with signal clustering similarity,” in Proc. Workshop
Autom. Auton. Veh. Security (AutoSec), 2022, pp. 1–8.

[31] M. Di Natale, H. Zeng, P. Giusto, and G. Arkadeb, Understanding and
Using the Controller Area Network Communication Protocol: Theory
and Practice. New York, NY, USA: Springer, 2012.

[32] M. D. Pesé, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and
K. G. Shin, “LibreCAN: Automated can message translator,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Security, 2019, pp. 2283–2300.

[33] D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A survey
of deep learning methods for cyber security,” Information, vol. 10, no. 4,
p. 122, 2019.

[34] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in Proc. Int. Conf. Eng. Technol. (ICET),
2017, pp. 1–6.

[35] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques, Hershey, PA, USA: IGI Global, 2010, pp. 242–264.

[36] “Seeed Arduino CAN.” 2021. [Online]. Available: https://github.com/
Seeed-Studio

[37] “SocketCAN.” Accessed: Dec. 10, 2021. [Online]. Available: https://
python-can.readthedocs.io/en/master/interfaces/socketcan.html

[38] “CANalyzer.” 2021. [Online]. Available: https://www.vector.com/int/en/
products/products-a-z/software/canalyzer/

[39] “VehicleSpy.” 2021. [Online]. Available: https://intrepidcs.com/products/
software/vehicle-spy/

[40] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise Reduction in Speech Processing. Heidelberg,
Germany: Springer, 2009, pp. 37–40. [Online]. Available: http://dx.doi.
org/10.1007/978-3-642-00296-0_5

[41] J. H. Ward Jr., “Hierarchical grouping to optimize an objective func-
tion,” J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 236–244, 1963.

[42] “Keras team.” Keras. 2015. [Online]. Available: https://github.com/keras-
team/keras

[43] J. A. Hanley and B. J. McNeil. “The meaning and use of the area under
a receiver operating characteristic (ROC) curve,” Radiology, vol. 43,
no. 1, pp. 29–36, 1982.

[44] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-based
network anomaly detection,” in Proc. Wireless Telecommun. Symposium
(WTS), 2018, pp. 1–5.

[45] “SynCAN.” Accessed: Jun. 21, 2021. [Online]. Available: https://github.
com/etas/SynCAN

[46] M. Weber, G. Wolf, E. Sax, and B. Zimmer, “Online detection of anoma-
lies in vehicle signals using replicator neural networks,” in Proc. 6th
Escar USA, 2018, pp. 1–14.

[47] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in auto-
mobile control network data with long short-term memory networks,” in
Proc. IEEE Int. Conf. Data Sci. Adv. Anal. (DSAA), 2016, pp. 130–139.

[48] “Tensorflow lite.” 2022. [Online]. Available: https://www.tensorflow.org/
lite

[49] K.-T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security,
2017, pp. 1109–1123.

[50] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “VoltageIDS: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Trans. Inf. Forensics Security, vol. 13, pp. 2114–2129,
2018.

[51] M. Kneib and C. Huth, “Scission: Signal characteristic-based sender
identification and intrusion detection in automotive networks,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Security, 2018, pp. 787–800.

[52] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion detec-
tion using deep convolutional neural network,” Veh. Commun., vol. 21,
Jan. 2020, Art. no. 100198.

[53] A. Desta, S. Ohira, I. Arai, and K. Fujikawa, “REC-CNN: In-vehicle
networks intrusion detection using convolutional neural networks trained
on recurrence plots,” Veh. Commun., vol. 35, Jun. 2022, Art. no. 100470.

[54] M. Jedh, L. B. Othmane, N. Ahmed, and B. Bhargava, “Detection of
message injection attacks onto the CAN bus using similarities of suc-
cessive messages-sequence graphs,” IEEE Trans. Inf. Forensics Security,
vol. 16, pp. 4133–4146, 2021.

[55] R. U. D. Refat, A. A. Elkhail, A. Hafeez, and H. Malik, “Detecting
CAN bus intrusion by applying machine learning method to graph based
features,” in Proc. SAI Intell. Syst. Conf., 2021, pp. 730–748.

[56] M. L. Han, B. I. Kwak, and H. K. Kim, “Event-triggered interval-based
anomaly detection and attack identification methods for an in-vehicle
network,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 2941–2956,
2021.

[57] I. Aliyu, M. C. Feliciano, S. Van Engelenburg, D. O. Kim, and
C. G. Lim, “A blockchain-based federated forest for SDN-enabled
in-vehicle network intrusion detection system,” IEEE Access, vol. 9,
pp. 102593–102608, 2021.

[58] D. H. Blevins, P. Moriano, R. A. Bridges, M. E. Verma, M. D. Iannacone,
and S. C. Hollifield, “Time-based CAN intrusion detection bench-
mark,” in Proc. Workshop Autom. Auton. Veh. Security (AutoSec), 2021,
pp. 1–7.

[59] S. Rajapaksha, H. Kalutarage, M. O. Al-Kadri, G. Madzudzo, and
A. V. Petrovski. “Keep the moving vehicle secure: Context-aware intru-
sion detection system for in-vehicle CAN bus security,” in Proc. 14th
Int. Conf. Cyber Conflict Keep Moving! (CyCon), vol. 700, 2022,
pp. 309–330.

[60] M. Al-Saud, A. M. Eltamaly, M. A. Mohamed, and A. Kavousi-Fard,
“An intelligent data-driven model to secure intravehicle communications
based on machine learning,” IEEE Trans. Ind. Electron., vol. 67, no. 6,
pp. 5112–5119, Jun. 2020.

[61] S. Sharmin and H. Mansor, “Intrusion detection on the in-vehicle
network using machine learning,” in Proc. 3rd Int. Cyber Resilience
Conf. (CRC), 2021, pp. 1–6.

[62] H. M. Song and H. K. Kim, “Self-supervised anomaly detection for
in-vehicle network using noised pseudo normal data,” IEEE Trans. Veh.
Technol., vol. 70, no. 2, pp. 1098–1108, Feb. 2021.

[63] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based intrusion
detection system for in-vehicle network,” in Proc. 16th Annu. Conf.
Privacy, Security Trust (PST), 2018, pp. 1–6.

[64] Q. Zhao, M. Chen, Z. Gu, S. Luan, H. Zeng, and S. Chakrabory, “CAN
bus intrusion detection based on auxiliary classifier GAN and out-of-
distribution detection,” ACM Trans. Embedded Comput. Syst., vol. 21,
no. 4, pp. 1–30, 2022.

[65] D. Shi, M. Xu, T. Wu, and L. Kou, “Intrusion detecting system based on
temporal convolutional network for in-vehicle CAN networks,” Mobile
Inf. Syst., vol. 2021, Sep. 2021, Art. no. 1440259.

[66] G. Baldini, “Intrusion detection systems in in-vehicle networks based on
bag-of-words,” in Proc. 5th Cyber Security Netw. Conf. (CSNet), 2021,
pp. 41–48.

[67] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PLoS ONE, vol. 11,
no. 6, 2016, Art. no. e0155781.

[68] F. Fenzl, R. Rieke, Y. Chevalier, A. Dominik, and I. Kotenko,
“Continuous fields: Enhanced in-vehicle anomaly detection using
machine learning models,” Simulat. Model. Pract. Theory, vol. 105,
Dec. 2020, Art. no. 102143.

[69] F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, “Car hacking
identification through fuzzy logic algorithms,” in Proc. IEEE Int. Conf.
Fuzzy Syst. (FUZZ-IEEE), 2017, pp. 1–7.

[70] Y. Wang, D. W. M. Chia, and Y. Ha, “Vulnerability of deep learning
model based anomaly detection in vehicle network,” in Proc. IEEE 63rd
Int. Midwest Symp. Circuits Syst. (MWSCAS), 2020, pp. 293–296.

[71] Z. Khan, M. Chowdhury, M. Islam, C.-Y. Huang, and M. Rahman,
“In-vehicle false information attack detection and mitigation frame-
work using machine learning and software defined networking,” 2019,
arXiv:1906.10203.

[72] V. Chockalingam, I. Larson, D. Lin, and S. Nofzinger, “Detecting attacks
on the CAN protocol with machine learning,” Annu. EECS, vol. 558,
no. 7, pp. 1–8, 2016.

[73] J. Zhang, F. Li, H. Zhang, R. Li, and Y. Li, “Intrusion detection system
using deep learning for in-vehicle security,” Ad Hoc Netw., vol. 95,
Dec. 2019, Art. no. 101974.

[74] V. Tanksale, “Anomaly detection for controller area networks using
long short-term memory,” IEEE Open J. Intell. Transp. Syst., vol. 1,
pp. 253–265, 2020.

SHAHRIAR et al.: CANShield: DEEP-LEARNING-BASED INTRUSION DETECTION FRAMEWORK 22127

[75] J. Ashraf, A. D. Bakhshi, N. Moustafa, H. Khurshid, A. Javed,
and A. Beheshti, “Novel deep learning-enabled LSTM autoencoder
architecture for discovering anomalous events from intelligent trans-
portation systems,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7,
pp. 4507–4518, Jul. 2021.

[76] S. Longari, D. H. N. Valcarcel, M. Zago, M. Carminati, and S. Zanero,
“CANnolo: An anomaly detection system based on LSTM autoencoders
for controller area network,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 2, pp. 1913–1924, Jun. 2021.

[77] S. V. Thiruloga, V. K. Kukkala, and S. Pasricha, “TENET: Temporal
CNN with attention for anomaly detection in automotive cyber-physical
systems,” in Proc. 27th Asia–South Pacific Design Autom. Conf. (ASP-
DAC), 2022, pp. 326–331.

[78] E. Novikova, V. Le, M. Yutin, M. Weber, and C. Anderson, “Autoencoder
anomaly detection on large CAN bus data,” in Proc. DLP-KDD, 2020,
pp. 1–9.

Md Hasan Shahriar (Student Member, IEEE)
received the B.Sc. degree in electrical and elec-
tronic engineering from Bangladesh University of
Engineering and Technology, Dhaka, Bangladesh, in
2016, and the M.S. degree in computer engineer-
ing from Florida International University, Miami,
FL, USA, in 2020. He is currently pursuing the
Ph.D. degree in computer science with Virginia
Tech, Arlington, VA, USA, under the supervision
of Prof. W. Lou.

His research interests include automotive cyberse-
curity, cyber–physical systems, and machine learning.

Yang Xiao (Member, IEEE) received the B.S. degree
from the School of Electrical and Information
Engineering, Shanghai Jiao Tong University,
Shanghai, China, in 2014, the M.S. degree from
the Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor,
MI, USA, in 2017, and the Ph.D. degree from the
Bradley Department of Electrical and Computer
Engineering, Virginia Tech, Arlington, VA, USA,
in 2022, supervised by Prof. W. Lou.

He is an Assistant Professor with the Department
of Computer Science, University of Kentucky, Lexington, KY, USA. His
research interests lie in network security, blockchain and distributed system
security, and wireless network security.

Pablo Moriano (Senior Member, IEEE) received
the B.S. and M.S. degrees in electrical engineer-
ing from Pontificia Universidad Javeriana, Bogotá,
Colombian, 2008 and 2011, respectively, and the
M.S. and Ph.D. degrees in informatics from Indiana
University Bloomington, Bloomington, IN, USA, in
2017 and 2019, respectively.

He is a Research Scientist with the Computer
Science and Mathematics Division, Oak Ridge
National Laboratory, Oak Ridge, TN, USA. His
research lies at the intersection of data science,

network science, and cybersecurity. In particular, he uses data-driven and
computational methods to discover and understand critical security issues
in large-scale networked systems. Applications of his research range across
multiple disciplines, including, the detection of exceptional events in social
media, Internet route hijacking, and insider threat behavior in version control
systems.

Dr. Moriano is a member of ACM and SIAM.

Wenjing Lou (Fellow, IEEE) received the Ph.D.
degree in electrical and computer engineering from
the University of Florida, Gainesville, FL, USA, in
2003.

She is currently a W. C. English Endowed
Professor of Computer Science with Virginia Tech,
Arlington, VA, USA. Her research interests cover
many topics in the cybersecurity field, with her cur-
rent research interest focusing on wireless network
security, trustworthy AI, blockchain, and security
and privacy problems in the Internet of Things (IoT)
systems.

Prof. Lou is a highly cited researcher by the Web of Science Group. She
received the Virginia Tech Alumni Award for Research Excellence in 2018.
She received the INFOCOM Test-of-Time paper award in 2020. She was the
TPC chair for IEEE INFOCOM 2019 and ACM WiSec 2020. She was the
Steering Committee Chair for IEEE CNS conference from 2013 to 2020. She
is currently a steering committee member of IEEE INFOCOM and IEEE
TRANSACTIONS ON MOBILE COMPUTING. She served as a program director
at the US National Science Foundation (NSF) from 2014 to 2017.

Y. Thomas Hou (Fellow, IEEE) received the
Ph.D. degree from the NYU Tandon School of
Engineering, Brooklyn, NY, USA, in 1998.

He is currently a Bradley Distinguished Professor
of Electrical and Computer Engineering with
Virginia Tech, Blacksburg, VA, USA, which he
joined in 2002. He was a member of Research Staff
with the Fujitsu Laboratories of America, Sunnyvale,
CA, USA, from 1997 to 2002. He has published over
350 papers in IEEE/ACM journals and conferences.
He holds six U.S. patents. He authored/coauthored

two graduate textbooks: Applied Optimization Methods for Wireless Networks
(Cambridge University Press, 2014) and Cognitive Radio Communications and
Networks: Principles and Practices (Academic Press/Elsevier, 2009). His cur-
rent research focuses on developing innovative real-time solutions to complex
science and engineering problems arising from wireless and mobile networks.
He is also interested in wireless security.

Prof. Hou was/is on the editorial boards of a number of IEEE and
ACM transactions and journals. His papers were recognized by ten best
paper awards from IEEE and ACM, including an IEEE INFOCOM Test of
Time Paper Award in 2023. He was a Steering Committee Chair of IEEE
INFOCOM conference and a member of the IEEE Communications Society
Board of Governors. He was also a Distinguished Lecturer of the IEEE
Communications Society. He was named an IEEE Fellow for contributions to
modeling and optimization of wireless networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

