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A B S T R A C T

Despite the robust structure of the Internet, it is still susceptible to disruptive routing updates that prevent
network traffic from reaching its destination. Our research shows that BGP announcements that are associated
with disruptive updates tend to occur in groups of relatively high frequency, followed by periods of infrequent
activity. We hypothesize that we may use these bursty characteristics to detect anomalous routing incidents.
In this work, we use manually verified ground truth metadata and volume of announcements as a baseline
measure, and propose a burstiness measure that detects prior anomalous incidents with high recall and better
precision than the volume baseline. We quantify the burstiness of inter-arrival times around the date and
times of four large-scale incidents: the Indosat hijacking event in April 2014, the Telecom Malaysia leak in
June 2015, the Bharti Airtel Ltd. hijack in November 2015, and the MainOne leak in November 2018; and
three smaller scale incidents that led to traffic interception: the Belarusian traffic direction in February 2013,
the Icelandic traffic direction in July 2013, and the Russian telecom that hijacked financial services in April
2017. Our method leverages the burstiness of disruptive update messages to detect these incidents. We describe
limitations, open challenges, and how this method can be used for routing anomaly detection.
1. Introduction

The Internet, although extremely robust [1], is notoriously vulnera-
ble to attack by means of the Border Gateway Protocol (BGP) [2]. BGP
update messages are assumed to be trustworthy. In other words, the
reachability information shared between autonomous systems (ASes)
is assumed to be correct without any verification. Despite the fact that
the latest version of the BGP protocol was released in 2006 [3], there
are no inherent protection mechanisms against participants advertising
false routes.

In practice, BGP lacks authentication mechanisms not only for the
announcement of the origin of IP prefixes but also the paths to that
prefix. This leaves BGP vulnerable to unintended misconfiguration
and malicious attacks [4]. The results of these disruptions include
traffic blackholing and traffic interception. In traffic blackholing, the
network traffic is dropped, never reaching its destination [5]. In traffic
interception, the announcing AS reroutes traffic for the victim IP prefix
and redirects it to the original origin AS after interception [6]. On
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this misdirected route, the traffic may be subject to eavesdropping [7],
traffic analysis [8], or tampering [9].

Well-known examples of BGP anomalies include the 2014 incident
in which Indonesia’s largest communication provider (Indosat) [10,11]
hijacked more than 320,000 routes, or roughly two-thirds of the In-
ternet, for almost three hours, as well as the 2017 event in which
Rostelecom, one of Russia’s largest, partially state-owned Internet ser-
vice providers [12,13] hijacked not only prefixes belonging to financial
services firms but also e-commerce and payment services. Both were
identified only after widespread diffusion of the incorrect routing in-
formation. In the case of Rostelecom, it was confirmed that the traffic
passed through Rostelecom en route to its intended destinations.

The current approaches to the challenges of routing anomalies
rely on (𝑖) cryptographic authentication or (𝑖𝑖) anomaly detection.
Cryptographic protocols include the Resource Public Key Infrastructure
(RPKI) [14] for origin authentication and BGPsec [15], which offers the
ability to authenticate an entire path. These approaches are powerful,
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but there has not been widespread adoption [16]. This lack of adoption
may be caused by processor requirements, memory requirements, or
a lack of incentive alignment [17]. BGPsec also is not widely used
because it does not support partial deployment, and cryptographic
solutions are expensive. Perhaps more importantly, it has been shown
that even with their widespread adoption, it will be not possible to
avoid the occurrence of route leaks, such as the Telecom Malaysia
incident in 2015 [18,19].

Anomaly detection approaches rely on measuring the control-plane
(using BGP feeds) or the data-plane (exploring reachability of IP ad-
dresses in suspicious announced routes), or a combination of both.
Anomaly detection does not require changes in the protocol itself.
They primarily are used in detecting anomalies based on passive or
active measurements in order to alert operators for mitigation and
response [20–23]. Most anomaly detection approaches are reactive
because they identify harm after disruptive updates have polluted some
detectable threshold of ASes with fake announcements.

Here, we propose an anomaly detection method that aims to identify
incipient incidents before diffusion and harm by identifying a routing
event as it emerges. Our goal is to identify anomalous routing events as
soon as possible with respect to manually verified ground truth meta-
data, such as BGPMon [24], Oracle Dyn [25], and Ars Technica [26].
Our ground truth sources manually investigate these incidents and
determine its impact based on empirical measurements. A similar pro-
cedure has been used before for labeling purposes [27]. To do this,
we use control-plane data collected by RouteViews [28] and served by
BGPStream [29]. The key observation in our anomaly detection method
is that there are bursty BGP announcements as soon as new routes
are adopted by neighbor ASes. We characterize bursty announcements
through statistical analysis of inter-arrival times. We conduct a case-
based systematic analysis of the changes of inter-arrival times that are
associated with well-known anomalous events that resulted in traffic
blackholing and intersection. We then propose a method based on
control-plane information and statistical analysis to detect anomalous
BGP announcements. We show that the proposed method is able to cor-
rectly identify the incidents in agreement with the ground truth while
reducing significantly the number of false positives when compared
with the volume baseline.

1.1. Our contributions

In this paper, we make the following contributions.
First, we validate our conjecture that inter-arrival time patterns of

BGP announcements are a useful signature for identification of BGP
routing incidents. We show that bursty patterns of announcements
are noticeable in agreement with the manually verified ground truth
metadata. To do so, we quantify the burstiness of BGP announcements
by observing that when there are BGP incidents, there are groups
of announcements with short inter-arrival times followed by larger
ones. We report that this observation is independent of the volume of
announcements.

Second, we describe the design of a proof-of-concept BGP anomaly
detection method that uses data only from current route collectors. We
use RouteViews route collectors to compute a detection signature of
BGP incidents based on the impact of short inter-arrival times.

Third, we report results of a longitudinal analysis of large-scale
routing incidents. We evaluated the proposed method by studying
four different BGP incidents that resulted in blackholing, i.e., Indosat
in April 2014, Telecom Malaysia in June 2015, Bharti Airtel Ltd. in
November 2015, and MainOne in November 2018; and three additional
incidents that resulted in traffic interception, i.e., GlobalOneBell in
February 2013, Opin Kerfi in July 2013, and Rostelecom in April
2017. Our approach allows for statistically significant differentiation
between normal behavior and disruption or anomalous changes during
the incidents. We validate this by conducting Monte Carlo simulations
2

on the burstiness behavior of ASes. We show that the proposed method b
outperforms, in most cases, the performance achieved by the baseline
of volume of announcements in terms of false positives and negatives.

We leverage a better understanding of past incidents to deter future
incidents in the network. We hope that this study will inspire more
investigations that maximize the use of routing updates, at the collector
level, for BGP hijacking identification. We provide access to the data
collection and analysis scripts for reproducibility purposes.1

1.2. Related work

1.2.1. Prior works closely related to the present study
Zhang et al. [30] developed signature- and statistic-based

approaches to detect anomalous BGP routing dynamics. Their statistic-
based approach used five measures to model BGP updates, including
an intensity measure derived from update inter-arrival times. They
discussed advantages and disadvantages from their two approaches
suggesting a combination of them to achieve better performance.

Chen et al. [31] proposed a statistical method for detecting large-
scale high impact BGP incidents relying on the update visibility matrix,
i.e., a binary matrix in which data from each collector and prefix is
recorded. The core of their contribution is on proposing a heuristic al-
gorithm that finds a submatrix that is dense and large from the original
matrix (which indicates unusual activity seen from different collectors
affecting similar prefixes). They validated their results by showing
that the identified events are strongly correlated with well-known
large-scale incidents.

Zhang et al. [32] proposed I-seismograph, a two-phase clustering
method to discover abnormal routing attributes extracted from BGP
updates [33]. Their anomaly detection method estimates normal dy-
namics over a period of time as a baseline to pinpoint abnormal
dynamics. I-seismograph reports ASes that were affected the most as
well as AS paths segments that surged significantly during an incident.

Testart et al. [34] characterized the distinctive features of ASes that
have been constantly reported for hijacking IP blocks for malicious
purposes, i.e, serial hijackers. They relied on this knowledge to train a
classifier to identify ASes with similar characteristics to those of serial
hijackers. Among the most important features used for the classification
task, they mentioned the intermittent AS presence and volatile prefix
origination behavior.

There are also other studies relying on signal processing and ma-
chine learning to detect BGP anomalies. Ganiz et al. [35] proposed a
supervised learning method to distinguish between different anomalies
in BGP traffic analyzing patterns in higher order paths. Mai et al. [36]
presented a framework to achieve both temporal and spatial local-
ization of BGP anomalies based on wavelet analysis and clustering.
Prakash et al. [37] found patterns and anomalies in BGP updates,
including self-similarity and power-law like tail distribution of updates.
They used these patterns to find anomalies using median filtering.
Deshpande et al. [38] introduced a mechanism for capturing changes in
features extracted from BGP update messages using statistical pattern
recognition. They found that features such as AS path length and AS
path edit distance were useful in characterizing the behavior of the
Internet under stress.

More recent work has focused on the use of deep learning and time
series feature extraction for BGP anomaly detection. Cheng et al. [39]
proposed a supervised multi-scale Long Short-Term Memory (LSTM)
model for detecting BGP anomalies. They used worm attacks time series
to train and test their method based on modeling multi-dimensional
time sequences. Cheng et al. [40] introduced a multi-scale LSTM model
that obtains temporal information at multiple scales using the Dis-
crete Wavelet transform. They tested their method on previous worm

1 Auxiliary material can be found at https://github.com/pmoriano/bgp-
urstiness.
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attacks and a single path leak. McGlynn et al. [41] used an auto-
encoder for encoding a high dimensional representation of benign
routing data. Significant deviations between inputs and the output of
the auto-encoder are reported as anomalies. They used their approach
for detecting Multiple-Origin AS conflicts and prefix hijacks. Fonseca
et al. [42] developed a dataset generation tool for extracting relevant
BGP update message features as well as assisting with its labeling. They
focused on volume and AS-PATH features which are commonly used by
BGP anomaly detection techniques. They used their tool for generating
datasets of features from different past incidents, the latest dated in
2016.

Compared with all the studies mentioned above, the present paper
is unique in that it leverages the fact that certain BGP incidents,
including large-scale and those that lead to traffic interception, show
characteristics of highly significant burstiness. We borrow ideas from
human dynamics to compute burstiness. We leverage this observation
to propose a statistic-based anomaly detection method (based on the
intensity of inter-arrival times) to show that it can detect both a variety
of incidents with high recall and better precision than the volume-
based baseline. In contrast with the work in [30], we did not make
assumptions that require the use of training data to run the analysis.
In addition, we extend the analysis for more than a limited number of
prefixes and collectors. We use manually verified ground truth meta-
data of incidents and apply a methodology to compute the performance
of the detection task. This new method found, for the first time, a
quantifiable way to distinguish between normal and strange update
dynamics based on burstiness. As opposed to the works in [31,32],
we only use update timestamps and do not require either aggregated
information from collectors nor metadata from updates. In addition, in
contrast with the work in [34], our focus is on the both the detection of
anomalous routing events and the perpetrator instead of only malicious
ASes.

Anomaly detection methods are widely used in the networking
community. We also detail recent related work in anomaly detec-
tion in applications beyond BGP that use a related approach. Lakhina
et al. [43] proposed a method to detect anomalies in network traffic.
Their method uses principal component analysis to distinguish between
normal (predictable) and abnormal (noisy) components. They evalu-
ated their method in network-wide traffic. Li et al. [44] developed a
method to enable the identification of the underlying cause of network
traffic anomalies. Their method is based on traffic sketches (random
aggregation of IP flows) to identify IP flows(s) that are the cause
of the anomalies. Liu et al. [45] introduced Opprentice. Opprentice
is a detection framework that applies supervised machine learning
to automatically combine and tune diverse anomaly detection meth-
ods with the aim of optimizing operators’ accuracy preference. Zhou
et al. [46] developed CorrOpt. CorrOpt is a system to mitigate packet
corruption in data center networks based on an optimization algorithm.
CorrOpt lowers corruption losses by three to six orders of magnitude
by intelligently selecting corruption links to disable while satisfying
capacity constraints. Hu et al. [47] designed CableMon. CableMon is a
system that applies machine learning to proactive network maintenance
data to improve the reliability of cable broadband networks by ticketing
predictions. CableMon generates statistical features from time series
data and customer trouble tickets to infer abnormal thresholds for these
generated features. CableMon prediction accuracy is four times higher
than the existing public-domain tools.

1.2.2. Other prior works related to the present study
Lad et al. [48] proposed a Prefix Hijack Alert System (PHAS). PHAS

relies on the idea of finding unique prefixes simultaneously originating
from multiple ASes—also referred to as Multiple Origin AS conflicts.
Once these conflicts are detected, this method filters false positives
3

using additional information from the network operators, e.g., checking
announcements of similar prefixes from different ASes that belong to
the same organization. Hu and Mao [49] proposed a framework that
launches data-plane probes only when anomalous update messages are
received. This system was intended to be used as customized software
installed in the routers. Khare et al. [20] focused on correlating sus-
picious route announcements with past network announcements. This
method can detect anomalies that have a huge impact, i.e., announce-
ments that pollute a considerable number of paths. Shi et al. [22]
introduced Argus. Argus is an automated system that detects prefix
hijacking and deduces the origin of the anomaly. Argus is based on
pervasively correlating control- and data-plane data during a given
time period to detect anomalies including sub-prefix hijacks. Schlamp
et al. [50] introduced HEAP. HEAP relies on the idea of processing
update messages to find malicious hijacked prefixes and then scanning
the network to find SSL/TLS-enabled hosts. These enabled hosts allow
the comparison of public keys prior and during an event, which is
the basis for detection of subprefix hijacks. Sermpezis et al. [51]
proposed ARTEMIS. ARTEMIS is an AS self-operated detection system
that exploits local configuration and real-time BGP data from public
monitoring services. ARTEMIS provides protection from different types
of attacks, including man-in-the-middle traffic manipulation, within a
minute of detection. For comprehensive surveys on BGP anomaly de-
tection and mitigation methods, we refer the reader to prior works [2,
52,53].

2. Methods

To provide indicators of BGP anomalies, we leverage the statistic-
based anomaly detection method SRI NIDES used in the intrusion de-
tection context [54]. Essentially, our method considers route announce-
ments as signals with expected patterns of behavior and detects devi-
ations from the expected patterns. Our focus is on inter-arrival times
rather than the specific content of the announcements themselves. We
show that claiming illegitimate ownership of a fraction of the Internet
requires transmitting correspondingly bursty announcements causing
perturbations in the patterns of route announcements.

2.1. Threat model

We assume that route updates from the attacker will be indistin-
guishable from others emerging from the AS, thus we assume that none
of the announcements can be trusted and the attacker can send out
announcements at will. Note that in this threat model, the hijacker has
no control over BGP update messages and traffic that originate outside
of its domain.

Our focus is on hijacks that use invalid announcements for an exact
target prefix 𝑝. These incidents may or may not lead to traffic intercep-
tion. Concretely, let AS1 be the legitimate owner of prefix 𝑝 and AS2 be
he hijacker AS. The announcement {AS1 − 𝑝} is a BGP announcement

for prefix 𝑝 with AS-PATH {AS1}, which is the legitimate owner of
the prefix. In contrast, during a hijack the hijacker AS2 announces
an invalid origin as its own, to a prefix that it is not authorized to
originate, i.e., {AS2−𝑝}. We focus on announcements leading to hijacks
that have an invalid origin. We did not considered other scenarios in
which the hijacker can announce a more specific prefix or forge the
AS-PATH [27]. Note that, however, this simple configuration of attack
has been proven to be successful for conducting prefix hijacking and
subsequent traffic interception. This can be done by forwarding the
hijacked traffic along its existing valid route to the legitimate owner.
As it was estimated in [55], Tier 3 ASes and beyond can hijack traffic
up to 31% of ASes and intercept traffic up to 17% of ASes.
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2.2. Data sources

2.2.1. Ground truth
We consider two types of routing incidents. The first type corre-

sponds to large-scale incidents because of their impact to the Internet
and the sheer number of compromised prefixes. The second type cor-
responds to BGP Man-In-The-Middle (MITM) incidents in which the AS
attacker hijacks traffic but ultimately sends it to the victim [56].

These exceptional selected routing incidents have not previously re-
ceived detailed academic analysis, so we could not know their patterns
of diffusion in advance. We obtained the details of each of the events
from BGPMon [24], Oracle Dyn [25], and Ars Technica [26]. Note that
these incidents have been analyzed and corroborated from different
sources. Details about the incidents and their respective dates and times
are listed below. Events are listed in chronological order within each
type. We used the following incidents as large-scale BGP hijacks case
studies.
An Indonesian ISP hijacks the world. On April 2, 2014, starting at
18:26 UTC, AS4761 (Indosat), one of the largest telecommunications
providers in Indonesia, announced more than 320,000 IP prefixes
belonging to other networks. Indosat announced roughly two-thirds
of the entire Internet address space [10,11]. A large fraction of the
hijacked prefixes belonged to Akamai, which is one of the largest
Content Delivery Networks. This incident lasted approximately for 2.9 h
until 21:15 UTC. Traffic continued to be delivered; however, the path
of the traffic was significantly altered.
Global collateral damage of the Telecom Malaysia leak. On June
12, 2015, starting at 08:43 UTC, AS4788 (Telecom Malaysia) an-
nounced about 179,000 IP prefixes to Level 3 (the largest transit
AS) [18,19]. Level 3 accepted these announcements and then propa-
gated the routes to their peers and customers around the world. Because
Telecom Malaysia is a customer of Level 3, the routes announced by
Telecom Malaysia were identified as a preferred delivery route for
Level 3. This event caused significant packet loss and Internet service
degradation around the world. Level 3 suffered a significant blackout
from the Asia pacific region and the rest of the world. Note that this
was a leak, so the data were not delivered after being transmitted to
Telecom Malaysia. This incident lasted approximately 2.7 h. At around
10:40 UTC, there were slowly observed improvements, and by 11:15
UTC the errors in the Routing Information Base (RIB) [3] began to be
resolved.
Large-scale BGP hijack in India. On November 6, 2015, starting at
05:52 UTC, AS9498 (Bharti Airtel Ltd.) claimed the ownership of about
16,123 IP prefixes. These addresses corresponded to more than 2000
unique ASes [57,58]. This event became widespread because two large
ASes (Cogent Communications and GlobeNet Cabos Submarinos S.A.)
accepted and propagated these routes to their peers and customers.
Legitimate owners of the prefixes included Akamai, Tata Communi-
cations, and Apple Inc. This incident lasted approximately 8.9 h until
14:40 UTC.
Small Nigerian ISP leak takes Google down. On November 12,
2018, starting at 21:13 UTC, AS37282 (MainOne) leaked 212 prefixes
belonging to Google [59,60]. This leak caused Google’s traffic to drop
at AS4809 (China Telecom), who improperly accepted the routes and
announced them world-wide. This incident affected services such as
Google Workspace (formerly G suite), Google Search, and Google Ana-
lytics. The redirection came in five distinct waves over a 74 min period
lasting until approximately 22:27 UTC.

We used the following incidents as BGP MITM case studies.
Belarusian traffic redirection. On February 27, 2013, starting at
08:01 UTC,2 AS28849 (GlobalOneBel) redirected global traffic in a
sequence of events lasting from a few minutes to several hours in
duration [6]. Redirections were claimed to happen almost on a daily

2 A contact from Oracle Dyn confirmed these details.
4
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basis through February. The set of victims were reported to be changing
constantly including financial institutions, governments, and network
providers. In our analysis, we focus on an incident in which traffic that
was intended to go from Guadalajara, Mexico to Washington, DC went
through Belarus.
Icelandic traffic redirection. On July 31, 2013, starting at 07:36 UTC,
AS48685 (Opin Kerfi) began announcing the ownership of 597 prefixes
of a large VoIP provider (one of the largest facilities-based providers
of managed services in the U.S.) [6]. This was one of the 17 incidents
during the period July 31 to August 30. These hijacks affected different
victims in other countries sharing a common pattern. Particularly, false
routes were sent to the hijacker’s peers in London leaving clean paths
to destinations in North America. This was with the aim of redirecting
traffic back to its original destination. In our analysis, we focus on an
incident in which traffic between two destinations in Denver, Colorado
went through Iceland.
Russian telecom hijacks financial services. On April 26, 2017, start-
ing at 22:36 UTC, AS12389 (Rostelecom) started to announce 50 pre-
fixes from 37 different ASes [12,13]. This incident affected prefixes
from several financial institutions including Visa, MasterCard, and
more than two dozen other institutions, including security companies,
such as Symantec. During this incident, the traffic of these institutions
was briefly routed through the Russian telecom before being sent to its
original destination. This incident lasted approximately seven minutes
until 22:43 UTC.

2.2.2. BGP data
After obtaining each of the incident details, we collected historical

BGP updates (announcements and withdrawals) using BGPStream.3
Update timestamp accuracy is one second. BGPStream provides an
open-source software framework for the analysis of historical and real-
time BGP data [29]. BGPStream extracts data directly from route
collectors. A route collector (collector, hereafter) is a host running a
collector process. The collector emulates a router that establishes BGP
peering sessions with BGP routers, known as feeders.

There are two popular projects running route collector processes,
RouteViews [28] and RIPE RIS [61]. At the time of this writing,
RouteViews and RIPE RIS operate 29 and 24 collectors respectively
which peer with hundreds of feeders [62]. We acknowledge that there
are other sources of BGP data, including network operators, other
route collector projects such as BGPmon [63] (from Colorado State
University)4 and Packet Clearing House (PCH) [64]. BGPmon is a
distributed system that monitors BGP data by peering with multiple
ASes. It provides access to real-time data that is available in XML
format. PCH operates route collectors at different Internet Exchange
Points around the world. PCH made this data publicly available on
its website. BGPmon and PCH provides access to a limited number
of feeders when compared to RouteViews and RIPE RIS [65]. Among
the last two, previous research has shown that there is a considerable
overlap between the measurements from RouteViews and RIPE RIS
projects [66]. However, as pointed out in [65], RouteViews provides
the more complete view of the Internet in terms IP prefix coverage.
This was estimated by showing that RouteViews collectors peer with
more full feeders (i.e., those feeders that announce an IPv4 (IPv6)
space closer to the full Internet IPv4 (IPv6) space currently advertised).
Therefore, we only collected BGP updates from RouteViews.

Our data collection is based on a subset of BGP updates that cover
the time before, during, and after selected incidents. We collected
approximately seven days of observations around the start date of each
of them. The purpose of collecting data over this time period is to be
able to distinguish between regular and anomalous behavior. This time

3 Available at https://bgpstream.caida.org/.
4 This refers to the free BGP monitoring service available at https://www.

gpmon.io/.

https://bgpstream.caida.org/
https://www.bgpmon.io/
https://www.bgpmon.io/
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period is long enough to capture the duration of each incident. This
means that when we collected data during this time period, we can
guarantee that we will monitor the impact of the incident during the
selected time frame.

We also verified that the incidents studied here were very unlikely
to be generated by session resets. Session resets occur when a BGP
session between a collector and feeder is re-established. Resets require
the complete routing table of the feeder to be sent to the collector,
generating a large number of announcements. We used the algorithm
in [67] to verify that these incidents were not originated by session
resets.

2.3. Burstiness of announcements

Burstiness refers to the tendency of certain events to occur in
groups of relatively high frequency, i.e., short inter-arrival time inter-
vals, followed by periods of relatively infrequent events [68,69]. Let
𝑋𝛼→𝛽 = {𝑋𝛼→𝛽 (𝑡)}, 𝑡 = 0, 1,… , 𝑛 − 1 be a time series of time-stamped
announcements originated by AS𝛼 and received by collector 𝛽. Let
𝛼→𝛽 be a random variable that represents the time interval between
onsecutive announcements so that 𝜏𝛼→𝛽 takes values in {𝑋𝛼→𝛽 (1) −
𝑋𝛼→𝛽 (0), 𝑋𝛼→𝛽 (2) −𝑋𝛼→𝛽 (1),… , 𝑋𝛼→𝛽 (𝑛 − 1) −𝑋𝛼→𝛽 (𝑛 − 2)}. Mathemat-
ically, burstiness can be characterized by analyzing the inter-arrival
time distribution 𝑃 (𝜏𝛼→𝛽 ). As proposed in [70], the inter-arrival distri-
bution can be characterized by a burstiness factor defined by 𝐵 = 𝜎−𝜇

𝜎+𝜇 .
Here, 𝜎 and 𝜇 denote the standard deviation and mean of the inter-
arrival time distribution. Note that the burstiness has a value of −1
for 𝜎 = 0, which means regular time intervals. It has a value of 0 for
𝜎 = 𝜇 in the case of random time intervals. Finally, it has a value of 1
for 𝜎 → ∞ and a finite 𝜇 in the case of a highly bursty time series of
announcements.

Note that the original formulation of burstiness depends on the
number of events used to describe the inter-arrival time distribution,
i.e., the value of 𝑛. We used a modified version of burstiness that
deals with the finite size effects of collected announcements while
maintaining the same scale defined in Eq. (1) [71]. In our analysis, we
computed the burstiness of ASes that sent at least five announcements
during the period of study.

𝐵(𝑛) =

√

𝑛 + 1 −
√

𝑛 − 1 + (
√

𝑛 + 1 +
√

𝑛 − 1)𝐵
√

𝑛 + 1 +
√

𝑛 − 1 − 2 + (
√

𝑛 + 1 −
√

𝑛 − 1 − 2)𝐵
(1)

.4. Detection method

We leverage the measure of inter-arrival times as received by the
ollectors to compute a measure of intensity based on the burstiness
f announcements. This measure was originally used in the context of
ntrusion detection in [54]. Let 𝑄𝛼→𝛽 be the number of announcements
ent by AS𝛼 and received by collector 𝛽, exponentially weighted. This
eans that more current announcements have a greater impact in

ts computation, i.e., short inter-arrival times. The value of 𝑄𝛼→𝛽 is
omputed using the recursive formula

𝛼→𝛽 (𝑡) = 1 + 2−𝑟𝛥𝑄𝛼→𝛽 (𝑡 − 1). (2)

ere, 𝑟 is the decay factor and 𝛥 = 𝑋𝛼→𝛽 (𝑡) − 𝑋𝛼→𝛽 (𝑡 − 1) is the inter-
rrival time between consecutive announcements. The decay factor 𝑟
etermines the half-life of 𝑄𝛼→𝛽 (𝑡). Large values of 𝑟 imply that the
alue of 𝑄𝛼→𝛽 (𝑡) is more influenced by more recent announcements.
maller values of 𝑟 imply that the value of 𝑄𝛼→𝛽 (𝑡) will be more heavily
nfluenced by announcements in the distant past. In accordance with
revious studies in [30,72], we verified that most inter-arrival times
f announcements are less than 300 seconds (the 99th percentile for

most of the collectors). We then use 300 seconds as the half-life value
to capture most of routing dynamics. Then the decay factor is set to be
𝑟 = 1∕300.
5

ℎ

2.4.1. Time series anomaly detection
Detection focuses on identifying anomalous observations in the time

series of 𝑄𝛼→𝛽 . We do that by forecasting the time series and using
predictions as the basis to identify abnormal behavior. This allows
us to deal with trends in the time series. This procedure has been
used before for anomaly detection in time series [73,74]. In particular,
we used predictions and the standard deviation of the predicted time
series as a proxy for the error to pinpoint anomalies. We used two
different models for time series prediction. The first one is based
on exponential moving average (EMA), which is a statistical-based
method [75]. We used EMA and its standard deviation as the mean
and standard deviation estimators, respectively. EMA is well suited to
work with unevenly spaced (also called unequally or irregularly spaced)
time series data [76] as it is the case in this analysis. In addition,
it has been shown that traditional statistical methods, such as EMA,
are more accurate and less computationally expensive than machine
learning-based methods, including those relying on neural networks, at
least for forecasting purposes [77]. The second one is based on a Long
Short-Term Memory (LSTM) network, which is a deep learning-based
method [78]. We used LSTM predictions and its standard deviation as
the mean and standard deviation estimators, respectively. We described
EMA and LSTM in detail below.
EMA. EMA computes estimations based on weighted averages of past
observations. EMA weights follow an exponential decay. That means
that more recent observations have more weight than past observations.
The recursive equations (for efficient computation in a data stream) for
the mean, variance, and standard deviation of EMA are based on [79]
and defined by

𝜇(𝑡) = 𝑎𝑦(𝑡) + (1 − 𝑎)𝜇(𝑡 − 1) (3)

where 𝜇(𝑡) and 𝑦(𝑡) are the mean estimate and the value of the time
series at time 𝑡, respectively. The parameter 𝑎 ∈ [0, 1] is the weighting
decrease. A higher value of 𝑎 discounts older observations faster. EMA
an be also parametrized using the window length 𝜔. The relationship
etween 𝑎 and 𝜔 is given by 𝑎 = 2

1+𝜔 . Similarly, the variance 𝑆(𝑡) and
standard deviation 𝜎(𝑡) estimates at time 𝑡 are defined by

𝜎2(𝑡) = 𝑆(𝑡) = (1 − 𝑎)(𝑆(𝑡 − 1) + 𝑎(𝑦(𝑡) − 𝜇(𝑡 − 1))2)

𝜎(𝑡) =
√

𝑆(𝑡) (4)

We used 𝜔 = 200 as the estimator for the window length because
it is the lowest value where the root mean square error between the
empirical observations and the EMA begins to flatten. This is consistent
across collectors.
LSTM. An LSTM network is a recurrent neural network architecture
specifically designed to address the vanishing gradient problem, i.e., a
backpropagation error that either growths or decays exponentially.
This makes LSTMs ideal to model long-term dependencies. An LSTM
network can be composed of multiple layers, and each layer features a
set of recurrently connected blocks, known as cells. Each cell has three
multiplicative units also known as gates, i.e., forget, input, and output
gates. They provide the functionality to reset, write, and read the cell.
Fig. 1 shows the structure of an LSTM cell. The outputs of the gates are
calculated as follows:

𝑓𝑡 = sigmoid(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 )

𝑖𝑡 = sigmoid(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑜𝑡 = sigmoid(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

he new cell state 𝐶𝑡 is updated using:

̃𝑡 = tanh(𝑊𝑐 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 )

𝑡 = 𝑓𝑡◦𝐶𝑡−1 + 𝑖𝑡◦�̃�𝑡

nd the output to the next cell is:
𝑡 = 𝑜𝑡◦ tanh(𝐶𝑡),
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Fig. 1. Structure of an LSTM cell.

here 𝑊∗ and 𝑏∗ are the weight matrices and bias vectors, respectively.
We divided each time series dataset per collector into a training and a
validation dataset. We used the first day of observations for training.
We assumed that the observations during the first day are free from
anomalies given that the incidents occurred approximately in the half
of the seven-day period, i.e., the model learns the normal behavior of
the time series. We selected the hyperparameters, including network
architecture and batch size, using cross-validation on the validation
dataset. We obtained consistent results across collectors using one
LSTM layer, four cells, and a batch size of 64. The output layer is a
fully connected dense layer with linear activation. We used the Adam
optimizer and the mean square error as the objective function. We used
Keras with the TensorFlow backend for model implementation.

2.4.2. Detection criterion
We pinpointed observations in the time series 𝑄𝛼→𝛽 (𝑡) based on how

ar they are from the predictions. We calibrated the distance threshold
rom the predictions using the standard deviation. The parameter 𝛿
ontrols how many standard deviations are considered to report an
nomaly. The results presented in this work are based on using 𝛿 = 2.
hen we set this threshold for the EMA/LSTM predictions, we can

etect anomalies with an error rate of 4.5% since 𝑃 (EMA/LSTM−2𝛿 <=
𝛼→𝛽 (𝑡) <= EMA/LSTM + 2𝛿) ≈ 95.5%. The values of 𝑟, 𝜔, and 𝛿
ay be tuned for detection purposes. The complete pseudocode for the
etection algorithm can be found in Algorithm 1.

Algorithm 1 Event-Detection (𝑋𝛼→𝛽 , 𝑟, 𝜔, 𝛿)
1: 𝑄𝛼→𝛽 ← {0} ⊳ Number of announcements
2: 𝛹 ← {0} ⊳ EMA/LSTM
3: 𝛴 ← {0} ⊳ EMA/LSTM standard deviation
4: �̂� ← {} ⊳ Anomalous timestamps
5: for 𝑡 in {1,… , 𝑛 − 1} do
6: 𝑄𝛼→𝛽 ← 𝑄𝛼→𝛽 ∪ {1 + 2−𝑟𝛥𝑄𝛼→𝛽 (𝑡 − 1)} using Eq. (2)
7: 𝛹 ← 𝛹 ∪ EMA/LSTM(𝑄𝛼→𝛽 (𝑡), 𝛹 (𝑡 − 1), 𝜔) using Eq. (3)
8: 𝛴 ← 𝛴 ∪ EMA/LSTM std(𝑄𝛼→𝛽 (𝑡), 𝛹 (𝑡 − 1), 𝛴(𝑡 − 1), 𝜔) using Eq. (4)
9: if 𝑄𝛼→𝛽 (𝑡) >= (𝛹 (𝑡) + 𝛿𝛴(𝑡)) then
10: �̂� ← �̂� ∪ {𝑡}
11: end if
12: end for
13: return �̂�

2.5. Detection evaluation

We compute the performance of the detection method by correlating
significant deviations in the smoothed time series and the ground truth
defined in Section 2.2.1. Note that the proposed method is unsupervised
and that labeling is performed only to generate the ground truth for
evaluating the performance of the proposed method. We compare the
proposed method against the baseline of volume of announcements.
To do so, we partition the time domain under study into equally
binned size intervals. We adjust the detection resolution by changing
the length of the intervals denoted by 𝑚. Let 𝑁 be the number of times
6
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Table 1
Geographical location and date of first dump of collectors. Collectors are ordered in
alphabetical order.

Collector name Location First dump

route-views.amsix Amsterdam, NL 2018-07-11 23:19
route-views.chicago Chicago, IL, US 2016-06-28 12:00
route-views.chile Santiago, CL 2018-01-31 20:00
route-views.eqix Ashburn, VA, US 2004-05-17 13:59
route-views.flix Miami, FL, US 2018-01-19 16:00
route-views.isc Palo Alto, CA, US 2003-11-27 02:00
route-views.jinx Johannesburg, ZA 2012-07-10 00:00
route-views.kixp Nairobi, KE 2005-10-07 15:44
route-views.linx London, GB 2004-03-16 13:45
route-views.napafrica Johannesburg, ZA 2018-02-01 02:00
route-views.nwax Portland, OR, US 2014-03-20 20:52
route-views.perth Perth, AU 2012-11-15 21:48
route-views.saopaulo Sao Paulo, BR 2011-03-17 16:19
route-views.sfmix San Francisco, CA, US 2015-04-14 20:00
route-views.sg Singapore, SG 2014-06-04 15:44
route-views.soxrs Belgrade, RS 2014-01-01 00:00
route-views.sydney Sydney, AU 2010-08-14 02:00
route-views.telxatl Atlanta, GA, US 2012-02-02 22:46
route-views.wide Tokyo, JP 2003-07-01 21:29
route-views2 Eugene, OR, US 2001-10-26 16:48
route-views3 Eugene, OR, US 2013-11-25 10:00
route-views4 Eugene, OR, US 2008-11-28 09:53
route-views6 Eugene, OR, US 2003-05-03 12:29

at which detection is assessed using consecutive intervals on length
𝑚. Let 𝐸 ⊆ {1, 2,… , 𝑁} represents the time intervals at which one
event occur based on the ground truth. Let �̂� ⊆ {1, 2,… , 𝑁} represents
the time intervals at which at least one event is reported based on
the detection method. The performance is then measured based on 𝐸
and �̂�. This procedure has been used before to report performance of
event detection methods in [80,81]. We compared the performance
of the proposed method and the volume baseline by counting the
number of time intervals that are true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN) in the detection task.
Precision quantifies the proportion of reported intervals that were cor-
rectly detected. That means that erroneously reporting a considerable
number of intervals produces low precision. It is quantified as 𝑇𝑃

𝑇𝑃+𝐹𝑃 .
ecall quantifies the proportion of actual anomalous intervals that were
orrectly detected. That means that having a considerable number of
ntervals that were not reported produces low recall. It is quantified as
𝑇𝑃

𝑇𝑃+𝐹𝑁 . F1 score quantifies the balance between precision and recall
through the harmonic mean. It is quantified as 2 precision×recall

precision+recall .

3. Results

In this section, we analyze the previously described BGP incidents.
Due to space constraints, here we present the analysis of the following
incidents: Indosat, Telecom Malaysia, and Rostelecom. For the analysis
of the remaining incidents: Bharti Airtel Ltd., MainOne, GlobalOneBel,
and Opin Kerfi, please refer to the Supplement, Section S1. We analyzed
the views from several data collectors at various locations around the
world. Table 1 shows the geographical location and the date of the first
dump of the collectors used in this study.5 We analyzed BGP announce-
ments and withdrawals, but the withdrawals did not affect our results,
perhaps in part because the volume of withdrawals is significantly
less [82–84]. Our results presented here include only announcements.
For the following analysis, we focused on the view of the top four
collectors based on the number of feeders. For the remaining collectors,
please refer to the Supplement, Section S2. We conduct three different
but complementary analyses.

5 Collectors’ location and date of the first dump were obtained from
outeViews and BGPStream respectively.

http://www.routeviews.org/routeviews/index.php/collectors/
https://bgpstream.caida.org/data
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First, we show how each of the incidents is observed from the point
of view of the different collectors (Section 3.1). To do so, we mea-
sure the number of announcements (i.e., unique originated prefixes)
received by the collectors and that were sent by the perpetrator AS,
before, during, and after the incident. We show how using the volume
of these announcements as the basis for anomaly detection may be
useful to pinpoint these anomalies. This strategy, however, produces
more false positives.

Second, we analyze the inter-arrival times of announcements at the
collectors (Section 3.2). We characterize these with a measure of bursti-
ness used previously for studying human dynamics in [70,85]. This
allows us to quantify the burstiness of announcements before, during,
and after the incidents. We show that ASes involved in the reported
incidents exhibit a statistically significant change in the inter-arrival
pattern of their BGP announcements at the collectors. We show that for
the detection of BGP incidents, the volume of messages is not enough
for incident detection. In contrast, the burstiness of the announcements
sent by ASes and seen for a specific collector is a better discriminator
than the volume of announcements in identifying anomalous behavior.
More importantly, we show that changes in burstiness correlate with
occurrence of the incidents.

Third, we detail a method for detecting anomalous announcements
based on quantifying inter-arrival times of announcements received by
the collectors (Section 3.3). This is done by leveraging the observation
that there is a significant change of burstiness during the incidents.
This allows us to characterize the distinguishing feature that occurs
during the incidents. Based on this distinguishing feature, we introduce
a detection algorithm and evaluate its effectiveness using real-stream
data obtained from collectors during the incidents. We compare the
performance of the anomaly detection method based on bustiness
and the baseline of volume. We show that for the task of detecting
anomalous behavior, the method based on bustiness is able to reduce
false positives considerably while correctly detecting the incidents.

3.1. Collectors’ disruption view

The reported anomalous behavior (ground truth) in each of the
incidents is highlighted in the figures by the vertical dashed lines. We
ranked the collectors in decreasing order by the number of feeders. In
this analysis, vertical circles represent the number of unique originated
prefixes. The horizontal solid line represents the value of the EMA
estimate. Each horizontal gray band represents one standard deviation
from the EMA using the same window length (more intense bands
indicate observations that are further away from the mean, based on
Algorithm 1). Observations that are more than two standard deviations
away from the EMA are marked with stars.
Indosat. Fig. 2 shows the number of announcements received from the
AS responsible for the incident.6 Note that two things happen. First,
there is a significant increase in the number of received announce-
ments. This increase is almost four orders of magnitude. Second, the
frequency at which the announcements are received is higher than
other announcements that are not close to the start of the incident. This
last observation implies shorter inter-arrival times in the proximity of
the incident. For these collectors, this behavior is correlated with the
reported ground truth.
Telecom Malaysia. Fig. 3 shows the number of announcements re-
ceived by every collector. The number of announcements increases up
to four orders of magnitude. Collectors observe an increase of bursti-
ness in announcements that is correlated with the ground truth. Even
more importantly, these announcements occur highly intermittently
and frequently. We also observe that there is a bursty high volume of
announcements on June 13, 2015 at 08:05 UTC. We acknowledge that

6 Each individual circle corresponds to the raw number of unique originated
prefixes at a particular timestamp. We did not bind them.
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Fig. 2. Time series of the number of announcements from AS4761 that collectors
received before, during, and after the Indosat incident in 2014 for the top four
collectors. Major ticks correspond to six-hour intervals while minor ticks correspond to
two-hour intervals.

these announcements may be either valid because of the reestablish-
ment of valid routes or invalid and reflecting a new incipient incident.
We found that the majority of these announcements were valid. We
revisit the case of invalid announcements in the Supplement, Section
S3.
Rostelecom. Fig. 4 shows an increase in the number of announcements
of up to four orders of magnitude. We observed that the reported
anomalies are not necessarily localized near the reported ground truth
but instead across the observation period.

3.2. Inter-arrival time analysis

There is both a significant increase in the number of arrivals of
announcements during the incident and a dramatic increase in the
frequency at which these announcements are received by the collectors
(see Section 3.1). The following analysis reveals that the inter-arrival
time of announcements as seen by the collectors exhibits a significant
degree of burstiness. To ground the results, we first analyze the joint
distribution of activity of each AS based on the burstiness (horizontal
axis) and the number of announcements (vertical axis) during one full
day of measurements around the incident. Collectors are ranked in
decreasing order by number of feeders. We marked with a ‘‘star’’ the
ASN that was responsible for the incident. We marked with ‘‘squares’’
the ASNs of the top three burstiests ASes. They provide a baseline for
comparison. The vertical and horizontal dashed lines represent the 95%
percentile of the distributions on each axis. The dark cells indicate a
high concentration of ASes with a characteristic burstiness and number
of announcements, which is quantified in the legend.

Second, we test if the apparent effect is real or is due to chance. In
particular, we apply a Monte Carlo test in which the null hypothesis
is that ASes send announcements in a bursty manner even during
times where there is no evidence of BGP incidents. For this analysis,
we collected time series of announcements over a full day of obser-
vations where no BGP incidents have been reported by our ground
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Fig. 3. Time series of the number of announcements from AS4788 that collectors
received before, during, and after the Telecom Malaysia incident in 2015.

Fig. 4. Time series of the number of announcements from AS12389 that collectors
received before, during, and after the Rostelecom incident in 2017.

truth sources. Our ground truth sources use experts to manually check
the incidents and determine potentially malicious hijacks (a similar
procedure as it has been used in [27]). One hundred of these random
time series were compiled for each collector for the top five burstiest
ASes (used as a baseline) and the perpetrator AS. In each of these
8

Fig. 5. Joint distribution based on the burstiness (horizontal axis) and number of
announcements (vertical axis) during one day interval around the Indosat incident.

100 time series, we compute the ASes associated burstiness. Here we
provide the results for the top four collectors based on the number
of feeders. Again, details for the other collectors are available in the
Supplement, Section S2.
Indosat. Fig. 5 shows the distribution of activity of each AS. In particu-
lar, we compute their bustiness and measure the number of announce-
ments. The AS represented by the star (i.e., Indosat) has among the
highest burstiness, belonging to the first quadrant, which is even com-
parable to the top three burstiests ASes, marked with squares, that are
placed in the fourth quadrant. Note also that there are ASes in the sec-
ond quadrant that have a considerable number of announcements but
lower burstiness, including, AS36947, AS41691, AS17557, AS13118,
AS53062. These ASes appear consistently among the different collectors
but were not reported to be involved in the incident. Conversely,
those ASes in the fourth quadrant show high burstiness but not a
significant number of announcements (i.e., AS61291, AS50139). Those
ASes are not neighbors of Indosat (corroborated through CAIDA’s AS
Rank [86]) nor involved in the incident. This empirical finding reveals
that although the volume of announcements increases for different ASes
during the incident, the actual AS involved in the incident has a distinct
burstiness pattern that is correlated when the incident is reported.
This observation is complementary to the works in [83,84] in which
a significant increase in the volume of announcements is used as a
detection signature, as well as illustrating the benefit of including a
measure of burstiness.

Fig. 6 shows notched box plots comparing the burstiness calculated
for the baseline ASes and the AS involved in the incident (the last one)
under the null hypothesis. Notched box plots have a contraction around
the median whose height is statistically important. When notches of the
boxes overlap, there is not a statistically significant difference between
the medians. In this case, these plots illustrate that the burstiness of
each of the ASes under study are not significantly different when there
is no incident. The observation highlighted with the red X corresponds
to the test statistic for the observations derived during the interval of
the incident. As can be seen, for collectors receiving announcements
from the AS involved in the incident, this observation lays outside the
region of statistical indistinguishability. This suggests that the bursti-
ness during the incident is statistically significant different, and it is
unlikely that such values would be observed under random conditions.
This argument reinforces the idea that the volume of announcements
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Fig. 6. Monte Carlo test for burstiness. Last column corresponds to the observations
of the AS responsible for the incident, i.e., AS4761.

is a necessary but not sufficient feature for detection of BGP incidents
(see Fig. 5). High burstiness is a distinctive feature too.
Telecom Malaysia. Fig. 7 shows that the AS involved in the incident
has a distinct characterization in the distribution, i.e., AS4788. It has
both high burstiness and number of announcements. Note that there
are ASes that sent a high number of announcements and do not have
high burstiness compared to Telecom Malaysia (those in the second
quadrant), e.g., AS54169, AS28573, AS23752. These ASes were not
involved with the incident nor are they neighbors of Telecom Malaysia.
Conversely, the ASes in the fourth quadrant have higher burstiness but
fewer announcements compared to Telecom Malaysia, e.g., AS134036,
AS50710, that is consistently found among collectors. These ASes are
not neighbors of Telecom Malaysia, and there is no evidence of ma-
licious updates coming from them. Fig. 8 shows the distribution of
burstiness computed over 100 samples of random one-day intervals.
This figure shows that the burstiness of the AS that was involved in the
incident is statistically significantly larger when compared to its own
normal behavior (e.g., baseline and null comparisons).
Rostelecom. We refer readers to Appendix A. We found similar find-
ings as the Indosat and Telecom Malaysia incidents. That means that for
the Rostelecom incident, we found a statistically significant number of
announcements as well as burstiness (see Fig. A.12). We also found that
the perpetrator’s burstiness during the incident stands out with respect
to itself (see Fig. A.13).

3.3. Anomaly detection

The main idea of our anomaly detection method relies on profiling
the expected behavior of a signal and then detecting deviations from
the expected pattern. To do so, we rely on the previous finding that
revealed that there is a significant increase in the burstiness of an-
nouncements when an incident happens. We operationalize that insight
by computing the time series 𝑄𝛼→𝛽 (𝑡) for each incident, based on
Eq. (2). We notice that analyzing the volume of announcements can be
misleading, and adding the measure of burstiness has two advantages.
First, a high volume of announcements may be caused by BGP session
9

Fig. 7. Joint distribution based on the total number of announcements and their
burstiness during one day interval around the Telecom Malaysia incident.

Fig. 8. Monte Carlo test for burstiness. The last column corresponds to the observations
of the AS responsible for the incident, i.e., AS4788.

resets and other vendor specific behaviors [82]. Second, it enables
detection of anomalies and decreases the number of candidates to be
examined as potential anomalies (e.g., quadrant two in Figs. 5, 7).

In the following analysis, the time series of 𝑄𝛼→𝛽 (𝑡) is represented
by the circles.7 The solid line represents the EMA of 𝑄𝛼→𝛽 (𝑡) for each
arriving unique announcement message at time 𝑡. Each horizontal gray

7 Each individual circle corresponds to the value of 𝑄𝛼→𝛽 (𝑡). We did not
bind them.
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Fig. 9. 𝑄4761→𝛽 time series for the Indosat incident.

band represents one standard deviation from the moving average using
the same window length. The darkness of the bands indicates the
distance from the means based on Algorithm 1. Observations that are
more than two standard deviations away from the EMA are marked
with stars. We finally compare the performance of the proposed method
(based on EMA and LSTM) and the baseline of volume (see Figs. 2, 3, 4),
denoted by ‘‘P’’ and ‘‘V’’ respectively, and report their results based on
precision, recall, and F1 score (to take care of the unbalance nature of
the dataset). We described the details about the LSTM in Section 2.4.1.
We used a detection resolution 𝑚 = 3 hours because it is the minimum
length of a sustained burst of announcements according with the inci-
dents that we studied. We emphasized in bold the result that achieves
better performance with respect to a particular metric. The procedure
to compute the performance was described in Section 2.5. Here, we
provide the results for the top four collectors based on the number of
feeders. For the remaining collectors please refer to the Supplement,
Section S2.
Indosat. Fig. 9 shows that around when the event was reported,
𝑄4761→𝛽 is more than two standard deviations away from the EMA. We
observe the correlation between the significant observations and the
ground truth. Note also that there are other outliers before the start of
the incident. We do not have evidence of other anomalies occurring at
these other specific times. Table 2 shows the results of the performance
comparison. Note that the proposed method achieves a lower number of
false positives while still detecting the incident in the shown collectors.
This is true for both detection methods based on EMA and LSTM. We
observe that in general, the result of the anomaly detection based on
EMA tends to outperform the one based on LSTM. This is in agreement
with previous findings for forecasting time series [77]. We discuss
insights about anomalous announcements that were not reported by
the ground and its impact on improving precision in the Supplement,
Section S3.
Telecom Malaysia. Fig. 10 shows the time series of 𝑄𝛼→𝛽 . The value
of 𝑄4788→𝛽 is more than two standard when the incident was reported
by BGPMon. Note also that route-views2 reports no outliers correlated
with the ground truth. This means that the perceived burstiness is not
10
Table 2
Performance comparison for the Indosat incident.

Collector name Precision Recall F1 score

P V P V P V

EM
A

route-views.linx 25% 6.7% 100% 100% 40% 12.5%
route-views.saopaulo 25% 3.7% 100% 100% 40% 7.1%
route-views4 33.3% 7.1% 100% 100% 50% 13.3%
route-views2 0% 5.9% 0% 100% 0% 11.1%

LS
TM

route-views.linx 7.1% 6.7% 100% 100% 13.3% 12.5%
route-views.saopaulo 5.6% 3.7% 100% 100% 10.5% 7.1%
route-views4 7.1% 7.1% 100% 100% 13.3% 13.3%
route-views2 10% 5.9% 100% 100% 18.2% 11.1%

Table 3
Performance comparison for the Telecom Malaysia incident.

Collector name Precision Recall F1 score

P V P V P V

EM
A

route-views.linx 14.3% 2.5% 100% 100% 25% 4.9%
route-views4 20% 4.8% 100% 100% 33.3% 9.1%
route-views2 0% 4.2% 0% 100% 0% 7.9%
route-views.saopaulo 33.3% 9.1% 100% 100% 50% 16.7%

LS
TM

route-views.linx 5.3% 2.5% 100% 100% 10% 4.9%
route-views4 25% 4.8% 100% 100% 40% 9.1%
route-views2 0% 4.2% 0% 100% 0% 7.9%
route-views.saopaulo 10% 9.1% 100% 100% 18.2% 16.7%

Fig. 10. 𝑄4788→𝛽 time series for the Telecom Malaysia incident.

as high as for the other collectors (see Fig. 7). Table 3 shows the
results of the performance comparison. Overall, the proposed method
outperforms the baseline of volume for both EMA and LSTM helping to
reduce the number of false negatives.
Rostelecom. Fig. 11 shows that route-views.saopaulo can detect the
incident and is correlated with the ground truth. This is consistent
with Fig. A.12 that shows that the perpetrator is placed in the first
quadrant (i.e., significant burstiness and number of announcements).
The proposed method is able to detect the incident as well in route-
views4 and but does not see it in route-views.linx nor route-views2.
Table 4 shows the results of the performance comparison for this
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Fig. 11. 𝑄12389→𝛽 time series for the Rostelecom incident.

Table 4
Performance comparison for the Rostelecom incident.

Collector name Precision Recall F1 score

P V P V P V

EM
A

route-views.saopaulo 33.3% 0% 100% 0% 50% 0%
route-views.linx 0% 0% 0% 0% 0% 0%
route-views4 33.3% 0% 100% 0% 50% 3.5%
route-views2 0% 0% 0% 0% 0% 0%

LS
TM

route-views.saopaulo 14.3% 0% 100% 0% 25% 0%
route-views.linx 0% 0% 0% 0% 0% 0%
route-views4 0% 0% 0% 0% 0% 0%
route-views2 25% 0% 100% 0% 40% 0%

incident. Overall, the proposed method outperforms the baseline of
volume while still detecting the incident. EMA based prediction tends
to produce better results than the LSTM overall.

4. Discussion

Routing anomalies caused by both misconfigurations and malicious
intent have tested the resilience of Internet core protocols [87]. Here,
we propose an anomaly detection method and show that it would iden-
tify different BGP incidents in agreement with manually verified ground
truth. To do so, we analyze inter-arrival times of BGP announcements
leveraging the RouteViews collector infrastructure. We found that the
burstiness, along with the volume of announcements, has the potential
to provide warnings of routing anomalies when they are evident using
traditional control-plane and data-plane approaches.

To validate the effectiveness of the proposed method, we conducted
analysis for seven cases of routing anomalies (see Section 2.2.1 for more
details). We have evaluated the statistical significance of announcement
burstiness, before, during, and after the events. We found that the per-
petrators of the incidents have statistically significant bursty patterns
that are visible from some collectors. We analyze the same features
under the null case (of no incidents) and corroborate that the bursty
behavior is characteristic of announcements sent prior the detection
of the incidents. By relying on this key observation, we propose an
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algorithm to identify when there is an incipient anomalous incident.
We made the data and scripts used in this research for reproducibility
purposes.

The proposed method would be effective against hijacks, route
leaks, and incidents leading to traffic interception. Having noted the
potential for our approach, we are also aware of some limitations of
our proposed work.
Real-time data availability: Our analysis is based on BGP announce-
ments received by RouteViews collectors. Only a subset of these collec-
tors support real-time monitoring through BGPmon.8 The RouteViews
data used in our analysis relies on BGPStream, which has an access
delay of approximately 20 min [51]. One option for further research
is to run these experiments with a reduced number of current real-
time RouteViews collectors through BGPmon. In addition, RIPE RIS
provides an API to access real-time BGP updates for a limited number
of collectors. Through sharing our scripts, we hope that individual
collectors could implement this approach and report the results in the
future.
Feeder contribution: Our method treats each router contribution as
equivalent. However, they vary significantly in terms of IP space cov-
erage as shown in previous research [62,65,88]. This has an effect on
the view that each collector has and the detection of the incidents.
Focus on detection but not mitigation: We propose an anomaly
detection method that allows the identification of BGP incidents. To
do so, the effectiveness of our proof-of-concept is evaluated based
on its ability to detect incidents with respect to manually verified
ground truth metadata. Yet we do not discuss mitigation strategies
once the events are detected, e.g., prefix deaggregation [89]. Of course,
these mitigation strategies can be implemented on top of our proposed
method to avoid wide diffusion of route misinformation.
Ground truth: We compute the performance of the detection task
based on the ground truth described in Section 2.2.1. We, however,
noticed that beyond the reported ground truth, there are maybe other
invalid announcements before or after the reported ground truth. Preci-
sion and F1 score metrics are affected because we restricted our ground
truth for performance comparison. By augmenting the ground truth
with the announcement of fake prefixes, we show that precision can be
improved at the expense of recall. Further analysis on this is discussed
in the Supplement, Section S3.

5. Conclusion

We illustrate the efficacy of leveraging RouteViews collectors’ in-
frastructure to identify anomalous routing incidents through the anal-
ysis of inter-arrival times of announcements. As a complement to
current anomaly identification approaches, we have demonstrated a
proof-of-concept that identifies real hijack incidents when these were
detected in practice by leveraging the current RouteViews collectors’
infrastructure. We have characterized seven different incidents, includ-
ing, large-scale and for traffic interception purposes from a different
perspective, one derived by analyzing the patterns of burstiness of BGP
announcements. The method detailed in this paper relies on the fact
that large-scale disruption events produces groups of BGP announce-
ments of relatively high frequency followed by periods of relatively
infrequent events, which can be measured as burstiness. Relying on this
observation, we describe a detection method that is able to indicate,
from a collector point of view, when an incident is incipient.

Additional future work includes examining the effectiveness of the
proposed method with real-time BGP updates from different collector
projects. BGPmon provides real-time BGP feeds from several feeders
as well as some collectors in the RIPE RIS project. The approach in
this paper can be also tested with a protocol specifically designed for

8 Here BGPmon refers to the free monitoring service develop by Colorado
State University available at https://www.bgpmon.io/.

https://www.bgpmon.io/
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Fig. A.12. Joint distribution based on the total number of announcements and their
burstiness during the one day interval around the Rostelecom incident.

monitoring purposes, such as the OpenBMP protocol [90]. An imple-
mentation of a prototype for anomaly detection based on the principles
of this paper seems feasible with the availability of real-time data from
different projects available in BGPStream.
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Appendix A. Inter-arrival time analysis: rostelecom

Fig. A.12 shows the placement of AS12389 in the joint distribu-
tion. Overall for this incident, the perpetrator tends to have sent a
high number of announcements and a significant bustiness for route-
views.saopaulo. Other ASes with a significant number of announce-
ments include AS15133, AS3203, and AS29049. These collectors are
not neighbors of AS12389.

Fig. A.13 shows the bustiness of the perpetrator during the incident
and a comparison with itself and the top five burstiest ASes. Overall,
the bustiness of the perpetrator is not as high as the top ASes during
the incident but it stands out with respect to itself.
12
Fig. A.13. Monte Carlo test for burstiness. The last column corresponds to the
observations of the AS responsible for the incident, i.e., 12389.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.comnet.2021.107835.
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